# ELECTRICAL ENGINEERING (ELECTROMAGNETICS AND PHOTONICS) - BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING 

## Overview

The Bachelor of Science in Electrical Engineering (B.S. EE) program of the Klipsch School is accredited by the Engineering Accreditation Commission of ABET, Inc. This particular concentration in the B.S. EE program gives students the opportunity to explore more deeply the area of electromagnetics and photonics.

## Electrical Engineering Program Educational Objectives

Below are the program educational objectives (PEOs) that describe the expected accomplishments of graduate during their first few years after graduation.

1. Our graduates will obtain relevant, productive employment in the private sector, government and/or pursue an advanced degree.
2. Our graduates will be using their engineering foundation to innovate solutions to the problems of the real world.

## Requirements (123-127 credits)

Students must complete all University degree requirements, which include: General Education requirements, Viewing a Wider World requirements, and elective credits to total at least 124 credits with 48 credits in courses numbered 300 or above. Developmental coursework will not count towards the degree requirements and/or elective credits, but may be needed in order to take the necessary English and Mathematics coursework.

BSEE students must earn a grade of C - or better in all engineering, technology, math and science courses (including associated prerequisite courses) required for the degree and also courses taken to satisfy the general education requirements for Area I-Communications, Area IIMathematics, and Area III-Laboratory Sciences. If a grade lower than C - is earned in any of these courses, the student is required to retake the course immediately the next semester it is offered. Students who earn a grade less than a C- the first time will be contacted by the department and/or academic advising center and advised about this policy and resources to help in their academic success. If the student fails to achieve a C - or better in any of these courses a second time, then the student must submit a written request to the Associate Dean of Academics in the College of Engineering to enroll in the course a third time. The student should explain the circumstances impacting their grade and the actions planned to improve their performance.

| Prefix Title | Credits |
| :--- | ---: |
| General Education |  |
| Area I: Communications |  |
| English Composition - Level 1 |  |
| ENGL 1110G Composition I | 4 |
| English Composition - Level 2 |  |
| Oral Communication ${ }^{1}$ | 3 |
| Area II: Mathematics | 3 |


| MATH 1511G | Calculus and Analytic Geometry I ${ }^{2}$ | 4 |
| :---: | :---: | :---: |
| Area IIIIIV: Laboratory Sciences and Social/Behavioral Sciences |  | 11 |
| CHEM 1215G | General Chemistry I Lecture and Laboratory for STEM Majors |  |
| PHYS 1310G \& PHYS 1310L | Calculus -Based Physics I and Calculus -Based Physics I Lab |  |
| Area IV: Social/Behavioral Sciences (3 credits) ${ }^{1}$ |  |  |
| Area V: Humanities ${ }^{1}$ |  | 3 |
| Area VI: Creative and Fine Arts ${ }^{1}$ |  | 3 |
| General Education Elective |  |  |
| MATH 1521G | Calculus and Analytic Geometry II | 4 |
| Viewing A Wider World |  |  |
| Viewing a Wider World Electives ${ }^{3}$ |  | 6 |
| Departmental/College Requirements |  |  |
| Program Specific Requirements |  |  |
| Mathematics and Natural Science |  |  |
| MATH 3160 | Introduction to Ordinary Differential Equations | 3 |
| PHYS 1320 G \& PHYS 1320L | Calculus -Based Physics II and Calculus -Based Physics II Lab | 4 |
| ENGR 190 | Introduction to Engineering Mathematics | 4 |
| E E 200 | Linear Algebra, Probability and Statistics Applications | 4 |
| E E 240 | Multivariate and Vector Calculus Applications | 3 |
| STEM |  |  |
| Choose two STEM Electives ${ }^{4}$ |  | 6 |
| Electrical and Computer Engineering |  |  |
| ENGR 120 | DC Circuit Analysis | 4 |
| ENGR 130 | Digital Logic | 4 |
| ENGR 140 | Introduction to Programming and Embedded Systems | 4 |
| ENGR 230 | AC Circuit Analysis | 4 |
| E E 300 | Cornerstone Design | 2 |
| E E 317 | Semiconductor Devices and Electronics I | 4 |
| E E 320 | Signals and Systems I | 3 |
| E E 325 | Signals and Systems II | 4 |
| E E 340 | Fields and Waves | 4 |
| E E 362 | Introduction to Computer Organization | 4 |
| ENGR 401 | Engineering Capstone ${ }^{5}$ | 3 |
| ENGR 402 | Engineering Capstone II | 3 |
| E E Concentration Required Courses |  |  |
| E E 454 | Antennas and Radiation ${ }^{6}$ | 3-4 |
| or E E 541 | Antennas and Radiation |  |
| or E E 452 | Introduction to Radar |  |
| or E E 548 | Introduction to Radar |  |
| E E 473 | Introduction to Optics ${ }^{6}$ | 3 |
| E E Concentration Electives: Choose two courses from the following (one must be an E E course): ${ }^{7}$ |  | 6-8 |
| E E 452 <br> or E E 548 | Introduction to Radar ${ }^{8}$ Introduction to Radar |  |
| $\text { E E } 453$ <br> or E E 521 | Microwave Engineering Microwave Engineering |  |
| EE478 or E E 528 | Fundamentals of Photonics Fundamentals of Photonics |  |
| CHME 467 | Nanoscience and Nanotechnology |  |
| M E 328 | Engineering Analysis II |  |
| ASTR 402 | Astronomical Observations and Techniques |  |
| MATH 4210 | Complex Variables |  |
| MATH 4220 | Fourier Series and Boundary Value Problems |  |



