CIVIL ENGINEERING BACHELOR OF SCIENCE IN CIVIL ENGINEERING

Requirements (126 Credits)

In addition to the university requirements for graduation, all students including transfers must satisfy the requirements contained in the academic policies for the NMSU College of Engineering. Students must have a 2.0 grade-point average in all departmental courses and all prerequisites and co-requisites must be taken as required. If a student takes a class and a co-requisite for that class at the same time and does not achieve a grade of C - or better in the co-requisite, the student may take no further classes for which the course or the corequisite are prerequisite. A student who completes a class three times without achieving a grade of C - or better will be dismissed from the Civil Engineering program, and not allowed to take any Civil Engineering courses from the department.

Students must complete all University degree requirements, which include the following: General Education requirements, Viewing a Wider World requirements, and elective credits to total at least 126 credits with 48 credits in courses numbered 300 or above. Developmental coursework will not count towards the degree requirements or elective credits, but may be needed for enrollment in the necessary English and Mathematics coursework.
Prefix Title
General Education
Area I: Communications
English Composition - Level 1
ENGL1110G Composition I 4

English Composition - Level 2

ENGL 2210G	Professional and Technical Communication
Honors	

Oral Communications		3
COMM 1115G Introduction to Communication	3	

| Area II: Mathematics | |
| :--- | :--- | :--- |
| MATH 1511G Calculus and Analytic Geometry I | |${ }^{2} \quad 4$

Area III/IV: Laboratory Sciences and Social/Behavioral Sciences		
CHEM 1215G	General Chemistry I Lecture and Laboratory for	4
	STEM Majors	

PHYS 1310G	Calculus -Based Physics I	4
\& PHYS 1310L	and Calculus -Based Physics I Lab	
ECON 2110G	Macroeconomic Principles	3
or ECON 2120G	Principles of Microeconomics	

General Education Elective

MATH 1521G	Calculus and Analytic Geometry II (Departmental/College Requirement)	4
Viewing A Wider World 3	$\mathbf{6}$	

Departmental/College Requirements

Mathematics

MATH 2530G	Calculus III	3
MATH 3160	Introduction to Ordinary Differential Equations	3
STAT 3110	Statistics for Engineers and Scientists	3

Natural Science		
GEOL 1110 G	Physical Geology	4
PHYS 1320G \& PHYS 1320L or CHEM 1225 G	Calculus -Based Physics II and Calculus -Based Physics II Lab General Chemistry II Lecture and Laboratory for STEM Majors	4
Technical		
ENGR 190	Introduction to Engineering Mathematics	4
ENGR 233	Engineering Mechanics I	3
ENGR 234	Engineering Mechanics II	3
ET 109	Computer Drafting Fundamentals	3
SUR 222	Introduction to Geomatics	3
Civil Engineering		
C E 151	Introduction to Civil Engineering	3
$\begin{aligned} & \text { C E } 256 \\ & \& 256 \mathrm{~L} \end{aligned}$	Environmental Engineering and Science and Environmental Science Laboratory	4
C E 301	Mechanics of Materials	3
C E 311	Civil Engineering Materials	3
C E 315	Structural Analysis	4
$\begin{aligned} & \text { C E } 331 \\ & \& 331 \text { L } \end{aligned}$	Fluid Mechanics and Hydraulics and Fluid Mechanics and Hydraulics Laboratory	4
C E 356	Fundamentals of Environmental Engineering	3
C E 357	Soil Mechanics	3
C E 382	Hydraulic and Hydrologic Engineering	3
C E 445	Reinforced Concrete Design	3
C E 457	Foundation Design	3
C E 471	Transportation Engineering	3
C E 477	Engineering Economics and Construction Management	3
C E 497	Senior Seminar	1
Elective Courses		
Choose two from the following:		6
A EN 459	Groundwater, Wells \& Pumps	
A EN 478	Irrigation and Drainage Engineering	
C E 444	Elements of Steel Design	
C E 452	Geohydrology	
C E 454	Wood Design	
C E 455	Masonry Design	
C E 460	Site Investigation	
C E 470	Design of Municipal and Hazardous Waste Landfills	
C E 479	Pavement Analysis and Design	
C E 483	Surface Water Hydrology	
C E 510	Introduction to Nondestructive Testing	
C E 544	Advanced Design of Steel Structures	
C E 545	Advanced Concrete Design	
ENVE 450	Aquatic Chemistry	
ENVE 451	Unit Processes/Operation of Water Treatment	
ENVE 452	Unit Processes/Operation of Wastewater Treatment	
ENVE 487	Air Pollution Control Systems Design	
Capstone Design Course		
Choose one from the following:		3
C E 469	Structural Systems	
C E 482	Hydraulic Structures	
C E 485	Design of Earth Dams	
ENVE 456	Environmental Engineering Design	

Second Language: (not required)
Electives, to bring the total credits to 126

Total Credits
126
${ }^{1}$ See the General Education (https://catalogs.nmsu.edu/nmsu/general-education-viewing-wider-world/) section of the catalog for a full list of courses.
${ }^{2}$ MATH 1511G Calculus and Analytic Geometry I is required for the degree but students may need to complete prerequisite(s) prior to enrolling in this course depending on math placement.
3 See the Viewing a Wider World (https://catalogs.nmsu.edu/nmsu/ general-education-viewing-wider-world/\#viewingawiderworldtext) section of the catalog for a full list of courses.

A Suggested Plan of Study for Students

This roadmap assumes student placement in MATH 1511G Calculus and Analytic Geometry I and ENGL 1110G Composition I. The contents and order of this roadmap may vary depending on initial student placement in mathematics and English. It is only a suggested plan of study for students and is not intended as a contract. Course availability may vary from fall to spring semester and may be subject to modification or change.

First Year

Fall		Credits
C E 151	Introduction to Civil Engineering ${ }^{1}$	3
CHEM 1215G	General Chemistry I Lecture and Laboratory for STEM Majors ${ }^{2}$	4
ENGL 1110G	Composition ${ }^{2}$	4
ENGR 190	Introduction to Engineering Mathematics ${ }^{3}$	4
	Credits	15
Spring		
ET 109	Computer Drafting Fundamentals ${ }^{4}$	3
GEOL 1110G	Physical Geology ${ }^{3}$	4
MATH 1511G	Calculus and Analytic Geometry I ${ }^{\text {2,5 }}$	4
PHYS 1310G	Calculus -Based Physics I ${ }^{2}$	4
\& PHYS 1310L	and Calculus -Based Physics I Lab ${ }^{2}$	

Second Year

Fall

COMM 1115G	Introduction to Communication ${ }^{2}$	3
ECON 2110G or ECON 2120G	Macroeconomic Principles ${ }^{2}$ or Principles of Microeconomics	3
ENGL 2210G	Professional and Technical Communication Honors 2	3
ENGR 233	Engineering Mechanics I 2	3
MATH 1521G	Calculus and Analytic Geometry II ${ }^{2}$	4
	Credits	$\mathbf{1 6}$

Spring		
C E 256	Environmental Engineering and Science	
\& 256 L	and Environmental Science Laboratory 3	4
C E 301	Mechanics of Materials 2	
ENGR 234	Engineering Mechanics II 2	3
MATH 2530G	Calculus III 2	3
SUR 222 $^{\text {Introduction to Geomatics }}{ }^{3}$	3	
	Credits	3

