
Computer Science 1

COMPUTER SCIENCE
Computer Science Courses
C S 111. Computer Science Principles
4 Credits (3+2P)
This course provides a broad and exciting introduction to the field of
computer science and the impact that computation has today on every
aspect of life. It focuses on exploring computing as a creative activity
and investigates the key foundations of computing: abstraction, data,
algorithms, and programming. It looks into how connectivity and the
Internet have revolutionized computing and demonstrates the global
impact that computing has achieved, and it reveals how a new student
in computer science might become part of the computing future. May be
repeated up to 4 credits.
Prerequisite: MATH 1215 or higher.
Learning Outcomes
1. Identify and differentiate programming constructs like IF, FOR, and

WHILE
2. Convert numbers between Hexadecimal, Binary and Decimal
3. Write pseudo code to manipulate a robot
4. Use an ASCII table to translate HEX strings into characters
5. Encrypt and Decrypt simple messages with a Caeser Cypher

C S 117. Introduction to Computer Animation
3 Credits (3)
Introductory course for learning to program with computer animation as
well as learning basic concepts in computer science. Students create
interactive animation projects such as computer games and learn to use
software packages for creating animations in small virtual worlds using
3D models. Recommended for students considering a minor/major in
computer science or simply interested in beginning computer animation
or programming.

C S 151. C++ Programming
3 Credits (2+2P)
Introduction to object-oriented programming in the C++ language. The
focus will be on preparing students to use C++ in their own areas. No
prior programming experience is required. Taught with C S 451.
Prerequisite: MATH 1215 or higher.
Learning Outcomes
1. Use various data types and the corresponding operations.
2. Write C++ programs that contain expressions, program control,

functions, arrays, and input/output
3. Explain basic object-oriented programming concepts.
4. Demonstrate proficiency in using classes, inheritance, pointers,

streams, and recursion

C S 152. Java Programming
3 Credits (2+2P)
Programming in the Java language. May be repeated up to 3 credits.
Prerequisite(s): MATH 1215 or higher.

C S 153. Python Programming I
3 Credits (3)
This course is an introduction to programming in the Python language,
covering fundamental scripts, data types and variables, functions, and
simple object creation and usage. The focus will be on preparing students
to use Python in their own areas. No prior programming experience is
required. Taught with C S 453.
Prerequisite: MATH 1215 or higher.

Learning Outcomes
1. Develop an algorithm to solve a problem
2. Demonstrate the ability to use Python data types: int, float, strings,

and lists; and the built-in functions associated with those data types
3. Edit and debug programs using the Spyder IDE for Python
4. Implement algorithms using the Python features of assignment,

input, output, branches, loops, and functions
5. Explain the fundamental concepts of object-oriented programming

with Python
6. Design and implement Python classes based on given attributes and

behaviors
7. Work with existing Python modules such as math, random, and os
8. Write Python programs that input data from files and store results in

files

C S 154. Python Programming II
3 Credits (3)
This course covers advanced Python programming, including classes,
objects, and inheritance, embedded programming in domain applications,
database interaction, and advanced data and text processing. The focus
will be on preparing students to use Python in their own areas.
Prerequisite(s): C S 153 or C S 453.

C S 158. R Programming I
3 Credits (3)
This course is an introduction to data processing in the R language,
covering fundamental script configuration, data types and data
collections, R control structures, and basic creation of graphs and data
visualizations. This course will not focus on the statistical capabilities of
R, though some basic statistical computations will be used.
Prerequisite(s): MATH 1220G.

C S 171G. Modern Computing in Practice
4 Credits (3+2P)
This course provides a survey of practical and theoretical foundations for
how computers work and how they support fundamental organizational
needs. The course covers broad aspects of the hardware, software, and
mathematical basis of computers. Lab assignments provide hands-on
applications to use simple basic software tools to write simple programs,
build and edit websites, analyze data with spreadsheets, choose an
office productivity suite, and demonstrate computer literacy to potential
employers. May be repeated up to 4 credits.
Prerequisite: MATH 1130G or MATH 1215 or higher.
Learning Outcomes
1. Students will create simple python programs using conditional

statements and loops
2. Students will analyze data with spreadsheet formulas, charts, and

tools
3. Students will create and publish a personal website using website

building tools
4. Students will edit HTML and CSS to format a website manually
5. Students will practice the skill of performing software QA and

providing actionable feedback to developers
6. Students will become aware of common cybersecurity risks
7. Students will learn basic vocabulary and context for broad aspects of

hardware, software, and computer science theory such as Security,
Privacy, Cloud Computing, the Internet, the Web, Operating Systems,
Discrete Math, and Information Systems

8. Students will be exposed to various sub-fields of CS including
artificial intelligence, security, data analytics, UX, web development,
and QA testing

2 Computer Science

9. Students will reason about the societal impacts of technology 1
10. Students will incorporate their new knowledge and skills into their

resume

C S 172. Computer Science I
4 Credits (3+2P)
Computational problem solving; problem analysis; implementation of
algorithms using Java. Object-oriented concepts, arrays, searching,
sorting, and recursion. Taught with C S 460. May be repeated up to 4
credits.
Prerequisite: (A C- or better in either MATH 1250G or (MATH 1430G or
higher)) OR (A C- or better in MATH 1220G and a 1 or better in the CS
Placement Test) OR (A C- or better in MATH 1220G and a C- or better in
C S 111).
Learning Outcomes
1. Develop algorithms to solve problems
2. Implement algorithms using the fundamental programming features

of sequence, selection, iteration, and recursion
3. Apply an understanding of primitive and object data types
4. Design and implement classes based on given attributes and

behaviors
5. Explain the fundamental concepts of object-oriented programming,

C S 209. Special Topics.
1-3 Credits
May be repeated for a maximum of 12 credits.

C S 271. Object Oriented Programming
4 Credits (3+2P)
Introduction to problem analysis and problem solving in the object-
oriented paradigm. Practical introduction to implementing solutions in
the C++ language. Pointers and dynamic memory allocation. Hands-on
experience with useful development tools. Taught with C S 462. May be
repeated up to 4 credits.
Prerequisite: At least a C- in C S 172 or ENGR 140.
Learning Outcomes
1. Develop an algorithm to solve a problem.
2. Implement algorithms using the C and C++ languages including

imperative and object-oriented language features.
3. Beyond what was learned in C S 172, E E 112, or E E 161 demonstrate

a noticeable increase in understanding of problem analysis and
program design.

4. Demonstrate proficiency in using control structures including if
statements (single selection), switch (multiple selection), and loops
(repetition).

5. Demonstrate proficiency in using arrays and functions
6. Create UML class and relationship diagrams.
7. Design a class to model a real-world person, place, thing, or event.
8. Use editing and debugging software to create, debug, and test C and

C++ programs.
9. Understand the basic terminology used in object-oriented

programming. 1
10. Create a make file to build an executable from a set of C or C++

source files.

C S 272. Introduction to Data Structures
4 Credits (3+2P)
Design, implementation, use of fundamental abstract data types and
their algorithms: lists, stacks, queues, deques, trees; imperative and

declarative programming. Internal sorting; time and space efficiency of
algorithms. Taught with C S 463.
Prerequisite: At least a C- in C S 172, or placement.
Learning Outcomes
1. Be able to implement and use lists
2. Be able to implement and use stacks
3. Be able to implement and use queues
4. Be able to implement and use trees
5. Be able to perform the run time analysis of basic algorithms using Big

O notation
6. Be able to implement, use, and analyze searching algorithms
7. Be able to solve a problem recursively
8. Take a problem statement from a user and convert it into a Java

program that fulfills the user’s needs
9. Create object oriented Java classes that effectively separate and hide

implementation details from client applications

C S 273. Machine Programming and Organization
4 Credits (3+2P)
Computer structure, instruction execution, addressing techniques;
programming in machine and assembly languages. Taught with C S 464.
May be repeated up to 4 credits.
Prerequisite: At least a C- in C S 172 or ENGR 140.
Learning Outcomes
1. Describe the architecture of a microcontroller, the interconnections

between the components, and the basic units inside the CPU
2. Use signed and unsigned numbers, the associated branching

instructions, and the corresponding flags in the status register
3. Explain immediate, direct, indirect addressing modes, their opcode

and operands, and their utilities
4. Map high-level programming language features to assembly

instructions, including loops, conditionals, procedure calls, value and
reference parameter passing, return values, and recursion

5. Interface with I/O devices including LED and sensors via digital input
and output, and analog-to-digital conversion

6. Program timers/counters and interrupts to control real-time
applications

7. Design an assembly program

C S 278. Discrete Mathematics for Computer Science
4 Credits (3+2P)
Discrete mathematics required for Computer Science, including
the basics of logic, number theory, methods of proof, sequences,
mathematical induction, set theory, counting, and functions. Taught with
C S 465.
Prerequisite: At least C- in C S 172.
Learning Outcomes
1. Use logic to specify precise meaning of statements, demonstrate the

equivalence of statements, and test the validity of arguments
2. Construct and recognize valid proofs using different techniques

including the principle of mathematical induction
3. Use summations, formulas for the sum of arithmetic and geometric

sequences
4. Explain and apply the concepts of sets and functions
5. Apply counting principles to determine the number of various

combinatorial configurations

C S 343. Algorithm Design & Implementation
3 Credits (3)

Computer Science 3

Introduction to efficient data structure and algorithm design. Basic graph
algorithms. Balanced search trees. Classic algorithm design paradigms:
divide-and-conquer, greedy scheme, and dynamic programming. Taught
with C S 493.
Prerequisite: At least a C- in C S 272, or consent of instructor.
Learning Outcomes
1. Be able to use and implement sorting algorithms
2. Be able to design and implement graph algorithms
3. Be able to design and implement algorithms using the divide-and-

conquer technique
4. Be able to design and implement algorithms using the greedy

technique
5. Be able to design and implement algorithms using the dynamic

programming technique
6. Be able to use and implement balanced search trees
7. Be able to use and implement hashing techniques
8. Be able to perform the run time analysis of basic algorithms using Big

O notation

C S 370. Compilers and Automata Theory
4 Credits (3+2P)
Methods, principles, and tools for programming language processor
design; basics of formal language theory (finite automata, regular
expressions, context-free grammars); development of compiler
components. Taught with C S 466.
Prerequisite: At least a C- in C S 271, C S 272, and C S 273.
Learning Outcomes
1. Understand the language theory concepts of regular languages,

context free languages, regular expressions, context free grammars,
and formal language hierarchy

2. Use Thompson's construction to convert from regular expression to
NFA, and subset construction to convert from NFA to DFA

3. Apply recursive descent parsing in programming a parser of a small
grammar

4. Understand the ideas in LL and LR parsing of context-free language
classes

5. Understand and use table-driven top-down (LL(1)) and bottom up
(SLR) parsing to parse a sentence

C S 371. Software Development
4 Credits (3+2P)
Software specification, design, testing, maintenance, documentation;
informal proof methods; team implementation of a large project. Taught
with C S 468.
Prerequisite: At least a C- in C S 271 and C S 272.
Learning Outcomes
1. Understand and explain the activites and structure of different styles

of software development processes, including waterfall, (spiral,)
iterative, and agile methodologies

2. Apply requirements knowledge and techniques to create functional
and non-functional requirements for a software system

3. Apply high and low level design ideas to create an object-oriented
design of a software system

4. Use good design and programming ideas to implement individual and
team software systems in compiled OOP languages

5. Apply white and black box testing techniques and tools to individual
and team software development

6. Use UML class diagrams (and sequence diagrams) to capture
aspects of system design and/or requirements (domain)

7. Use practical software development tools, including version control
systems, automated build tools, and testing tools

C S 372. Data Structures and Algorithms
4 Credits (3+2P)
Introduction to efficient data structure and algorithm design. Order
notation and asymptotic run-time of algorithms. Recurrence relations and
solutions. Abstract data type dynamic set and data structures based on
trees. Classic algorithm design paradigms: divide-and-conquer, dynamic
programming, greedy algorithms. Taught with C S 469. May be repeated
up to 4 credits.
Prerequisite: At least a C- in C S 272 and C S 278.
Learning Outcomes
1. Analyze the growth of functions via asymptotic notation
2. Evaluate the asymptotic running time of a given algorithm
3. Solve recurrence relations of the kinds encountered in algorithm

analysis
4. Design algorithms using the divide-and-conquer technique
5. Design algorithms using the greedy technique
6. Design algorithms using the dynamic-programming technique
7. Use and analyze data structures based on trees
8. Analyze the design, correctness, and time complexity of basic graph

algorithms

C S 380. Introduction to Cryptography
3 Credits (3)
The course covers basic cryptographic primitives, such as symmetric,
public-key ciphers, digital signature schemes, and hash functions, and
their mathematical underpinnings. Course helps students understand
basic notions of security in a cryptographic sense: chosen plaintext and
chosen ciphertext attacks, games, and reductions. Course also covers
computational number theory relevant to cryptography. Consent of
Instructor required. Taught with: C S 525.
Prerequisite: C S 278 (or equivalent) with a C or better.
Learning Outcomes
1. Describe basic cryptographic primitives, including symmetric ciphers,

asymmetric ciphers, digital signatures, message authentication
codes, and hash functions.

2. Understand the mathematical, fundamental underpinnings of
cryptography, and how to reason about the security of crypto
primitives: indistinguishability (IND) properties of ciphertexts, CPA/
CCA games, and reductions to fundamental math assumptions;

3. Be able to discuss number theory/algebra underpinning the design of
cryptographic primitives, in some depth.

C S 381. Principles of Virtual Reality
3 Credits (3)
This course is an introduction to building systems and doing research in /
on virtual reality. We cover system design, development, and evaluation,
with an emphasis on recent research in the space. We cover a range of
methods, qualitative and quantitative, in order to develop insights into
effective VR designs. Students in this class will develop a foundation in
VR development; learn about current topics in VR; and design, develop,
evaluate, and report on a VR system. Consent of Instructor required.
Prerequisite: C S 485.
Learning Outcomes
1. Design and develop systems in virtual reality.
2. Understand the variety of development techniques in VR.
3. Understand the state-of-the-art in VR systems.

4 Computer Science

4. Communicate understanding of people, designs, and evaluations
through presentations, demos, and/or reports.

C S 382. Modern Web Technologies
3 Credits (3)
In this course, we will take a full-stack approach to modern web
application design. We will start with the fundamentals including HTML5,
CSS3, Javascript, JSON, and the underlying networking concepts
and protocols driving the modern web. We will then move on to more
advanced topics including javascript backend development with Node.js,
NoSQL database design with MongoDB, cloud computing, and re-
sponsive web design. Finally, we cover advanced topics including the
design and im- plementation of browser extensions and real-time web
technologies like WebRTC and WebSockets. Consent of Instructor
required. Taught with: C S 532.
Learning Outcomes
1. Understand the fundamental technologies and operation of the web.
2. Design and develop responsive interactive web sites.
3. Deploy web applications on Cloud Computing Platforms.
4. Leverage modern tools and packages to develop full stack web

applications.
5. Be fluent in the application of emerging web technologies like

browser extensions, WebSockets, and WebRTC.
6. Use existing materials and references on the web to learn new skills.

C S 383. Introduction to Deep Learning
3 Credits (3)
The course covers basic concepts of neural networks which include
transition of classical machine learning to hierarchical feature learning,
feedforward networks, regularization, optimization, hyperparameter
tuning, deep convolutional networks and their applications in computer
vision, deep sequence models, and deep generative models. Taught
together with C S 533. May be repeated up to 3 credits.
Prerequisite: At least a C- in C S 272 or C S 153, and C S 278, or consent
of instructor.
Learning Outcomes
1. Have significant familiarity with different state-of-the-art theories and

practices of deep learning.
2. Be able to apply deep learning to a variety of tasks suitable for data

science-based projects of academia and industry.
3. Understand much of the current literature on the topic, review papers,

and extend their knowledge through further study.
4. Design and evaluate novel deep learning models.
5. Train and test deep learning models on real-life and benchmark

datasets using Python libraries such as TensorFlow and PyTorch.

C S 384. Graph Data Mining
3 Credits (3)
The course covers graph terminology, representation, and techniques
to extract patterns from large graph data. The topics include random
and scale-free graph generation, link analysis (PageRank), graph
representation learning, graph neural networks, deep graph generation,
community detection, frequent subgraph mining, graph classification,
influence maximization, and knowledge graph mining. May be repeated
up to 3 credits.
Prerequisite: At least a C- in C S 272 or C S 153, and C S 278, or consent
of instructor.
Learning Outcomes
1. Have significant familiarity with different state-of-the-art theories and

practices of graph data mining

2. Graph representation and graph querying using graph manipulating
toolbox/library

3. Use random and scale-free graph models to generate graphs and
visualize complex network properties

4. Apply algorithms such as PageRank, spectral clustering, and non-
negative matrix factorization

5. Implement graph representation learning algorithms and graph neural
networks

6. Understand much of the current literature on the topic, review papers,
extend their knowledge through further study, and present findings of
the papers.

C S 409. Independent Study
1-6 Credits (1-6)
Faculty supervised investigation, to culminate in a written report. May be
repeated up to 6 credits.
Prerequisite(s): Written agreement with faculty supervisor.

C S 419. Computing Ethics and Social Implications of Computing
1 Credit (1)
An overview of ethics for computing majors includes: history of
computing, intellectual property, privacy, ethical frameworks, professional
ethical responsibilities, and risks of computer-based systems.
Prerequisite: At least a C- in C S 371.
Learning Outcomes
1. Understand the fundamental technologies and operation of the web.
2. Design and develop responsive interactive web sites.
3. Deploy web applications on Cloud Computing Platforms.
4. Leverage modern tools and packages to develop full stack web

applications.
5. Be fluent in the application of emerging web technologies like

browser extensions, WebSockets, and WebRTC.
6. Use existing materials and references on the web to learn new skills.

C S 448. Senior Project
4 Credits (4)
Capstone course in which C S majors work in teams and apply computer
science skills to complete a large project. Restricted to: C S majors.
Prerequisite: At least a C- in C S 370 and C S 371.
Learning Outcomes
1. Apply design and development principles in the construction of

software systems of varying complexity
2. Apply mathematical foundations, algorithmic principles, and

computer science theory in the modeling and design of computer-
based systems in a way that demonstrates comprehension of the
tradeoffs involved in design choices

3. Design, implement, and evaluate a computer-based system, process,
component, or program to meet desired needs

4. Use current techniques, skills, and tools necessary for computing
practice

5. Analyze a problem, and identify and define the computing
requirements appropriate to its solution

6. Function effectively as teams to accomplish a common goal
7. Communicate effectively with a range of audiences

C S 449. Senior Thesis
4 Credits (4)
Capstone course in which C S majors apply computer science skills
to complete a research project, culminating in a written thesis report.
Restricted to: C S majors.

Computer Science 5

Prerequisite: At least a C- in C S 370 and C S 371.
Learning Outcomes
1. Apply design and development principles in the construction of

software systems of varying complexity
2. Apply mathematical foundations, algorithmic principles, and

computer science theory in the modeling and design of computer-
based systems in a way that demonstrates comprehension of the
tradeoffs involved in design choices

3. Design, implement, and evaluate a computer-based system, process,
component, or program to meet desired needs

4. Use current techniques, skills, and tools necessary for computing
practice

5. Analyze a problem, identify, and define the computing requirements
appropriate to its solution

6. Communicate effectively with a range of audiences via presentations
and technical reports

C S 451. C++ Programming
3 Credits (3)
Programming in the C++ language. Taught with C S 151. More
advanced than C S 151. Recommended for nonmajors only. Not for CS
undergraduate students. May be repeated up to 3 credits.
Learning Outcomes
1. Use various data types and the corresponding operations.
2. Write C++ programs that contain expressions, program control,

functions, arrays, and input/output.
3. Explain basic object-oriented programming concepts.
4. Demonstrate proficiency in using classes, inheritance, pointers,

streams, and recursion.

C S 452. Java Programming
3 Credits (2+2P)
Programming in the Java language. More advanced than C S 152.
Recommended for nonmajors only. Not for CS undergraduate standing.
May be repeated up to 3 credits.

C S 453. Python Programming I
3 Credits (3)
This course is an introduction to programming in the Python language,
covering fundamental scripts, data types and variables, functions, and
simple object creation and usage. The focus will be on preparing students
to use Python in their own areas. No prior programming experience is
required. Taught with C S 153. More advanced than C S 153.
Learning Outcomes
1. Develop an algorithm to solve a problem
2. Demonstrate the ability to use Python data types: int, float, strings,

and lists; and the built-in functions associated with those data types
3. Edit and debug programs using the Spyder IDE for Python
4. Implement algorithms using the Python features of assignment,

input, output, branches, loops, and functions
5. Explain the fundamental concepts of object-oriented programming

with Python
6. Design and implement Python classes based on given attributes and

behaviors
7. Work with existing Python modules such as math, random, and os
8. Write Python programs that input data from files and store results in

files

C S 454. Python Programming II
3 Credits (3)

This course covers advanced Python programming, including classes,
objects, and inheritance, embedded programming in domain applications,
database interaction, and advanced data and text processing. The focus
will be on preparing students to use Python in their own areas. For
graduate students only. Has more advanced work than C S 154, and does
not count towards CS major requirements. Not for CS undergraduate
students. May be repeated up to 3 credits. Restricted to: exclude C S
majors.
Prerequisite(s): C S 153 or C S 453.

C S 458. R Programming I
3 Credits (3)
This course is an introduction to data processing in the R language,
covering fundamental script configuration, data types and data
collections, R control structures, and basic creation of graphs and data
visualizations. This course will not focus on the statistical capabilities of
R, though some basic statistical computations will be used. For graduate
students only. Has more advanced work than C S 158. Does not count
towards CS major requirements. May be repeated up to 3 credits.
Prerequisite(s): Good understanding of college algebra or higher.

C S 460. Computer Science I Transition
3 Credits (3)
Computational problem solving; problem analysis; implementation
of algorithms. Recursive structures and algorithms. For C S graduate
students only; cannot be used to meet a C S student's program of study.
Taught with C S 172.
Learning Outcomes
1. Develop algorithms to solve problems
2. Implement algorithms using the fundamental programming features

of sequence, selection, iteration, and recursion
3. Apply an understanding of primitive and object data types
4. Design and implement classes based on given attributes and

behaviors
5. Explain the fundamental concepts of object-oriented programming

C S 462. Object Oriented Programming Transition
3 Credits (3)
Introduction to problem analysis and problem solving in the object-
oriented paradigm. Practical introduction to implementing solutions in
the C++ language. Hands-on experience with useful development tools.
Cannot be used in a C S student's program of study. Consent of Instructor
required. Taught with C S 271.
Prerequisite: At least a C- in C S 172 or C S 460 or consent of instructor.
Learning Outcomes
1. Develop an algorithm to solve a problem.
2. Implement algorithms using the C and C++ languages including

imperative and object-oriented language features.
3. Demonstrate a noticeable increase in understanding of problem

analysis and program design beyond what was learned in C S 172, E E
112, or E E 161

4. Demonstrate proficiency in using control structures including if
statements (single selection), switch (multiple selection), and loops
(repetition).

5. Demonstrate proficiency in using arrays and functions.
6. Create UML class and relationship diagrams.
7. Design a class to model a real-world person, place, thing, or event.
8. Use editing and debugging software to create, debug, and test C and

C++ programs.
9. Understand the basic terminology used in object-oriented

programming. 1

6 Computer Science

10. Create a make file to build an executable from a set of C or C++
source files.

C S 463. Introduction to Data Structures Transition
3 Credits (3)
Design, implementation, use of fundamental abstract data types and
their algorithms: lists, stacks, queues, deques, trees; imperative and
declarative programming. Internal sorting; time and space efficiency of
algorithms. Cannot be used in a C S student's program of study. Consent
of Instructor required. Taught with C S 272.
Prerequisite: At least a C- in C S 172 or C S 460 or consent of instructor.
Learning Outcomes
1. Be able to implement and use lists
2. Be able to implement and use stacks
3. Be able to implement and use queues
4. Be able to implement and use trees
5. Be able to perform the run time analysis of basic algorithms using Big

O notation
6. Be able to implement, use, and analyze searching algorithms
7. Be able to solve a problem recursively
8. Take a problem statement from a user and convert it into a Java

program that fulfills the user’s needs
9. Create object oriented Java classes that effectively separate and hide

implementation details from client applications

C S 464. Machine Programming and Organization Transition
3 Credits (3)
Computer structure, instruction execution, addressing techniques;
programming in machine and assembly languages. Cannot be used in a C
S student's program of study. Consent of Instructor required. Taught with
C S 273.
Prerequisite: At least a C- in C S 172 or C S 460 or consent of instructor.
Learning Outcomes
1. Describe the architecture of a microcontroller, the interconnections

between the components, and the basic units inside the CPU
2. Use signed and unsigned numbers, the associated branching

instructions, and the corresponding flags in the status register
3. Explain immediate, direct, indirect addressing modes, their opcode

and operands, and their utilities
4. Map high-level programming language features to assembly

instructions, including loops, conditionals, procedure calls, value and
reference parameter passing, return values, and recursion

5. Interface with I/O devices including LED and sensors via digital input
and output, and analog-to-digital conversion

6. Program timers/counters and interrupts to control real-time
applications

7. Design an assembly program

C S 465. Discrete Math for Computer Science Transition
3 Credits (3)
Logical connectives, sets, functions, relations, graphics, trees, proofs,
induction, and application to computer science. For C S graduate
students only. Cannot be used in a C S student's program of study.
Consent of Instructor required. Taught with C S 278.
Prerequisite: At least a C- in C S 172 or C S 460 or consent of instructor.
Learning Outcomes
1. Use logic to specify precise meaning of statements, demonstrate the

equivalence of statements, and test the validity of arguments

2. Construct and recognize valid proofs using different techniques
including the principle of mathematical induction

3. Use summations, formulas for the sum of arithmetic and geometric
sequences

4. Explain and apply the concepts of sets and functions
5. Apply counting principles to determine the number of various

combinatorial configurations

C S 466. Compilers and Automata Transition
3 Credits (3)
Methods, principles, and tools for programming language processor
design; basics of formal language theory (finite automata, regular
expressions, context-free grammars); development of compiler
components. For C S graduate students only; cannot be used in a
students program of study. Taught with C S 370.
Prerequisite: At least a C in (C S 271 or C S 462), in (C S 272 or C S 463),
in (C S 273 or C S 464), or consent of instructor.
Learning Outcomes
1. Understand the language theory concepts of regular languages,

context free languages, regular expressions, context free grammars,
and formal language hierarchy

2. Use Thompson's construction to convert from regular expression to
NFA, and subset construction to convert from NFA to DFA

3. Apply recursive descent parsing in programming a parser of a small
grammar

4. Understand the ideas in LL and LR parsing of context-free language
classes

5. Understand and use table-driven top-down (LL(1)) and bottom up
(SLR) parsing to parse a sentence

C S 468. Software Development Transition
3 Credits (3)
Software specification, design, testing, maintenance, documentation;
informal proof methods; team implementation of a large project. For C
S graduate students only. Cannot be used in a C S student's program of
study. Consent of Instructor required. Taught with C S 371.
Prerequisite: At least a C- in C S 271 or C S 462, in C S 272 or C S 463, or
consent of instructor.
Learning Outcomes
1. Understand and explain the activites and structure of different styles

of software development processes, including waterfall, (spiral,)
iterative, and agile methodologies

2. Apply requirements knowledge and techniques to create functional
and non-functional requirements for a software system

3. Apply high and low level design ideas to create an object-oriented
design of a software system

4. Use good design and programming ideas to implement individual and
team software systems in compiled OOP languages

5. Apply white and black box testing techniques and tools to individual
and team software development

6. Use UML class diagrams (and sequence diagrams) to capture
aspects of system design and/or requirements (domain)

7. Use practical software development tools, including version control
systems, automated build tools, and testing tools

C S 469. Data Structure and Algorithms Transition
3 Credits (3)
Introduction to efficient data structure and algorithm design. Order
notation and asymptotic run-time of algorithms. Recurrence relations and
solutions. Abstract data type dynamic set and data structures based on

Computer Science 7

trees. Classic algorithm design paradigms: divide-and-conquer, dynamic
programming, greedy algorithms. For CS graduate students only. Taught
with CS 372. May be repeated up to 24 credits.
Prerequisite: At least a C- in (C S 272 or C S 463) and a C- in (C S 278 or
C S 465), or consent of instructor.
Learning Outcomes
1. Analyze the growth of functions via asymptotic notation
2. Evaluate the asymptotic running time of a given algorithm
3. Solve recurrence relations of the kinds encountered in algorithm

analysis
4. Design algorithms using the divide-and-conquer technique
5. Design algorithms using the greedy technique
6. Design algorithms using the dynamic-programming technique
7. Use and analyze data structures based on trees
8. Analyze the design, correctness, and time complexity of basic graph

algorithms

C S 471. Programming Language Structure I
3 Credits (3)
Syntax, semantics, implementation, and application of programming
languages; abstract data types; concurrency. Not for C S graduate
students.
Prerequisite: At least a C- in C S 370 and C S 371.
Learning Outcomes
1. Improve the background for choosing appropriate programming

languages for certain classes of programming problems
2. Increase the ability to learn new programming languages
3. Critically evaluate what paradigm and language are best suited for a

new problem
4. Demonstrate the use of the primary segments for a running program
5. Apply the principles of functional programming
6. Apply the principles of logic programming
7. Program a simple parallel program with threads
8. Program in at least five different programming languages
9. Program in C to demonstrate architecture details

C S 473. Architectural Concepts I
3 Credits (3)
Comparison of architectures to illustrate concepts of computer
organization; relationships between architectural and software features.
Not for C S graduate students.
Prerequisite: At least a C- in C S 273 and C S 370.
Learning Outcomes
1. Explain the concepts in instruction set architecture
2. Analyze the behavior of pipelined CPU data path and control
3. Analyze behavior and performance of memory hierarchies with

different cache designs
4. Describe the implementation of binary integer and floating point

representation and arithmetic
5. Identify and analyze performance of instruction level parallelism and

multi-core parallelism
6. Describe virtual memory and architectural support for operating

systems
7. Understand the organization of various kinds of secondary storage

devices, and their performance and tradeoffs
8. Create software that demonstrates performance of architectural

features and evaluate the effects of software change

C S 474. Operating Systems I
3 Credits (3)
Operating system principles and structures, and interactions with
architectures. Not for C S graduate students.
Prerequisite: At least a C- in C S 273, C S 371, and C S 372.
Learning Outcomes
1. Explain OS control and management of hardware resources
2. Explain OS management and execution of processes
3. Explain OS control and management of real and virtual memory
4. Explain classical concurrency issues and their solutions
5. Analyze and implement threads
6. Analyze OS interaction with networks and architecture

C S 475. Artificial Intelligence I
3 Credits (3)
Fundamental principles and techniques in artificial intelligence
systems. Intelligent Agents; solving problems by searching; local search
techniques; game-playing agents; constraint satisfaction problems;
knowledge representation and reasoning. Further selected topics may
also be covered. Not for C S graduate students. Taught with C S 505.
Prerequisite: At least a C- in C S 272 and C S 278.
Learning Outcomes
1. Use various search algorithms commonly used in problem-solving
2. Use methods for solving constraint satisfaction problems
3. Use propositional and first-order logic to represent knowledge
4. Use logical inference methods to derive conclusions from a

knowledge base
5. Use adversarial search for game-playing agents
6. Analyze the different search strategies
7. Design and Implement heuristic search for problem-solving

C S 476. Computer Graphics I
3 Credits (3)
Languages, programming, devices, and data structures for representation
and interactive display of complex objects. Not for C S graduate students.
Taught with C S 506.
Prerequisite: At least C- in C S 370 or C S 371.
Learning Outcomes
1. Techniques used in three-dimensional graphics
2. Computer Graphics lightning and shading
3. Client-server graphics using WebGL
4. Geometric and Solid modeling
5. Computer Graphics implementation algorithms

C S 477. Digital Game Design
3 Credits (3)
An introduction to digital game design. Topics include design,
development, and playtesting of games. The course is structured to use
team-based learning. Not for C S graduate students. Taught with C S 517.
Prerequisite/Corequisite: C S 371.
Learning Outcomes
1. Describe, analyze, and/or critique games with a consistent

vocabulary
2. Design, develop, and playtest games
3. Understand the formal systems of games
4. Communicate game designs through demonstrations and

presentations

8 Computer Science

C S 478. Computer Security
3 Credits (3)
Introduction to the art and science of computer security. Fundamentals
of computer security including elementary cryptography, authentication
and access control, security threats, attacks, detection and prevention in
application software, operating systems, networks and databases. Not
for C S graduate students. Taught with C S 513.
Prerequisite: At least a C- in C S 272, C S 273 or consent of instructor.
Learning Outcomes
1. Describe fundamental concepts in security and privacy
2. Understand requirements of security in different contexts
3. Describe practical implementation challenges in security/privacy

system design
4. Explain at a high-level symmetric and public key cryptography
5. Explain various access control mechanisms such as authnetication,

authorization
6. Understand aspects of secure system design that a computer

programmer/engineer needs to account for

C S 479. Special Topics
1-12 Credits
Topics announced in the Schedule of Classes. May be repeated under
different subtitles. Not for C S graduate students. May be repeated up to
12 credits.

C S 480. Linux System Administration
3 Credits (3)
Basic system administration for Linux environments. Topics include user
managements, file systems, security, backups, system monitoring, kernel
configuration and other relevant aspects of system administration. Not
for Computer Science graduate students.
Learning Outcomes
1. Be able to properly set up, configure, and maintain a Linux-based set

of networked computers with shared resources
2. Understand the significance of proper administration of systems and

its impact on users, their data and computational resources, and the
security of the overall installation

C S 481. Visual Programming
3 Credits (3)
Design and implementation of programs using visual (i.e. dataflow or
diagrammatic) programming techniques, with an emphasis on real-time
data processing. Students will learn how to design visual programs,
including how to handle cycles and state maintenance, and will learn to
process audio, video, and other data using visual programs. Not for C S
graduate students. Taught with C S 518.
Prerequisite: At least a C- in C S 272 and C S 278.
Learning Outcomes
1. Develop software in graph-based visual environments
2. Understand flows of control in visual programming environments
3. Use signals, digital and analog, to drive software
4. Communicate software design and evaluation with presentations,

demos, and reports

C S 482. Database Management Systems I
3 Credits (3)
Database design and implementation; models of database management
systems; privacy, security, protection, recovery. Not for C S graduate
students. Taught with C S 502.
Prerequisite: At least a C- in C S 272 and C S 278.

Learning Outcomes
1. Utilize the basic concepts of relational database model
2. Utilize database query languages (e.g. SQL)
3. Identify data integrity and security requirements
4. Analyze, capture, and model user requirements for building database

systems using conceptual models
5. Design and normalize relational schemas
6. Apply application development methods to implement a database

system

C S 484. Computer Networks I
3 Credits (3)
Fundamental concepts of computer communication networks: layered
network architecture, network components, protocol stack and service.
Example of application, transport, network and data link layers, protocols
primarily drawn from the Internet (TCP, UDP, and IP) protocol multimedia
networks; network management and security. Not for C S graduate
students. Taught with C S 504.
Prerequisite: At least a C- in C S 272 and CS 273.
Learning Outcomes
1. Explain the layered model of networking using the OSI and TCP/IP

models
2. Describe the purpose and concepts of each layer in the OSI and TCP/

IP models
3. Describe IP as a particular network layer protocol
4. Describe TCP and UDP as particular transport layer protocols
5. Describe Ethernet (11) and WiFi (15) as particular data link layer

protocols
6. Describe and analyze routing and routing issues
7. Describe and analyze data link layer switching
8. Describe the need for application protocols such as HTTP
9. Explain other network issues such as multicasting and audio/video

data streaming 1
10. Implement socket-based network programs

C S 485. Human-Centered Computing
3 Credits (3)
Covers iterative, human-centered interface design, including prototyping
and evaluation. Basics of graphic design and visualization. Not for C S
graduate students. Taught with C S 515.
Prerequisite: At least C- in C S 371.
Learning Outcomes
1. Describe, analyze, and/or critique a device interface using a design

vocabulary
2. Enact a human-centered process of interaction design: gather data;

develop a data-driven design; iterate design through testing; and
evaluate results

3. Conduct human-computer interaction research by proposing,
developing, and conducting experiments; analyzing data; and
developing synthesized results

4. Communicate design and evaluation with presentations, demos, and
reports

5. Implement a variety of interaction techniques

C S 486. Bioinformatics
3 Credits (3)
Introduction to bioinformatics and computational biology. Computational
approaches to sequences analysis, protein structure prediction and

Computer Science 9

analysis, and selected topics from current advances in bioinformatics.
Not for C S graduate students. Taught with C S 516.
Prerequisite: At least a C- in C S 272 and C S 278.
Learning Outcomes
1. Explain the biology motivation of a bioinformatics question
2. Formulate a computational problem and its solution to address a

molecular biology question
3. Implement basic bioinformatics algorithms such as sequence

alignment, pattern matching, and genome assembly
4. Evaluate the performance of a bioinformatics algorithm on real data

sets
5. Argue the correctness of a bioinformatics algorithm
6. Analyze the complexity of a bioinformatics algorithm

C S 487. Applied Machine Learning I
3 Credits (3)
An introductory course on practical machine learning. An overview
of concepts for both unsupervised and supervised learning. Topics
include classification, regression, clustering, and dimension reduction.
Classical methods and algorithms such as linear regression, neural
networks, support vector machines, and ensemble approaches. Recent
techniques such as deep learning. Focused on applying of machine
learning techniques in application domains. Not for Graduate Majors.
Taught with: C S 519.
Prerequisite: At least a C- in C S 272, MATH 1511G; or consent of
instructor.
Learning Outcomes
1. Implement and utilize different data processing techniques
2. Differentiate and assess several dimension reduction techniques
3. Utilize several classifiers (SVM, Decision tree, k-Nearest Neighbor,

and logistic regression) and differentiate their advantages and
disadvantages

4. Explain and demonstrate regression analysis
5. Describe and illustrate clustering approaches
6. Apply ensemble learning approaches
7. Implement several neural network classifiers, including deep learning

models

C S 488. Introduction to Data Mining
3 Credits (3)
Techniques for exploring large data sets and discovering patterns in
them. Data mining concepts, metrics to measure its effectiveness.
Methods in classification, clustering, frequent pattern analysis. Selected
topics from current advances in data mining. Taught with C S 508.
Prerequisite: At least a C- in C S 272 and C S 278.
Learning Outcomes
1. Explain and recognize different data mining tasks such as data

pre-processing, visualization, classification, regression, clustering,
association rules, and anomaly detection

2. Apply classical data mining / machine learning algorithms for
classification, clustering, association rules, and anomaly detection

3. Evaluate and compare the performance of different data mining /
machine learning algorithms

4. Utilize data mining algorithms to analyze data in real applications
using a data mining tool

C S 489. Bioinformatics Programming
3 Credits (3)
Computer programming to analyze high-throughput molecular
biology data including genomic sequences, bulk and single-cell

transcriptome, epigenome, and other omics data. Quality control, library
size normalization, confounding effect removal, clustering, statistical
modeling, trajectory inference, and visualization. Taught with C S 509.
May be repeated up to 3 credits.
Learning Outcomes
1. Write R scripts and functions to manipulate biological sequences,

genome annotation, and gene expression data
2. Perform high-throughput data analysis with established R packages
3. Detect differential gene expression on RNA sequencing data
4. Perform single-cell RNA sequencing data analysis (quality control,

library size normalization, confounding effect removal, modeling)
5. Assess statistical significance of analytical results
6. Create automatic data analysis pipeline to link multiple software

packages

C S 491. Parallel Programming
3 Credits (3)
Programming of shared memory and distributed memory machines;
tools and languages for parallel programming; techniques for parallel
programming; parallel programming environments. Not for C S graduate
students. Taught with C S 521.
Prerequisite: At least a C- in C S 370 or consent of instructor.
Learning Outcomes
1. Describe existing parallel architectures including shared memory

versus distributed memory platforms
2. Apply basic techniques for organizing parallel computations
3. Apply basic techniques for performance measurement and

theoretical limitations of parallelism
4. Explain alternative parallel techniques and hardware
5. Perform performance Analysis of different parallel programming

technices
6. Program shared memory machines using threads, processes, and the

OpenMP library
7. Program using a message passing paradigm and obtain working

knowledge of the Message Passing Interface (MPI)

C S 493. Algorithm Design and Implementation
3 Credits (3)
This course introduces the basic knowledge of designing classical
algorithms and implementing these algorithms using a programming
language. In particular, the course teaches various data structures,
including graphs and balanced binary search trees, and efficient
schemes to implement these data structures. This course also teaches
basic algorithm design techniques including divide-and-conquer,
greedy scheme, and dynamic programming. This course covers graph
algorithms, including graph traversals (depth-first search and breadth-
first search), connectivity, shortest paths, and minimum spanning trees.
Graduate standing. Not for CS students. Taught with C S 343.
Prerequisite: At least a C- in C S 272, or Consent of Instructor.
Learning Outcomes
1. Be able to use and implement sorting algorithms
2. Be able to design and implement graph algorithms
3. Be able to design and implement algorithms using the divide-and-

conquer technique
4. Be able to design and implement algorithms using the greedy

technique
5. Be able to design and implement algorithms using the dynamic

programming technique
6. Be able to use and implement balanced search trees

10 Computer Science

7. Be able to use and implement hashing techniques
8. Be able to perform the run time analysis of basic algorithms using Big

O notation

C S 494. Introduction to Smart Grids
3 Credits (3)
This course is an introduction to the technologies and design strategies
associated with the Smart Grid. The emphasis will be on the development
of communications, energy delivery, coordination mechanisms, and
management tools to monitor transmission and distribution networks.
Topics include: Smart grid introduction and evolution; Power systems;
Networking and transport control; Artificial intelligence & agent
coordination; Data mining for smart grids. Taught with C S 514. May be
repeated up to 3 credits.
Prerequisite: At least a C- in C S 272 and a C- in ENGR 230; or Consent of
instructor.
Learning Outcomes
1. Get basic understanding of how conventional power system is

operated and protected
2. Understand and use basic knowledge of communication techniques

in smart grids
3. Understand and use basic knowledge for the coordination of the

different units in smart grids
4. Understand and apply data mining techniques for protecting smart

grids

C S 496. Cloud and Edge Computing
3 Credits (3)
The course presents a top-down view of cloud computing, from
applications and administration to programming and infrastructure. Its
main focus is on the concepts of networking and parallel programming
for cloud computing and large scale distributed systems which form the
cloud infrastructure. The topics include: overview of cloud computing,
cloud systems, parallel processing in the cloud, distributed storage
systems, virtualization, security in the cloud, and multicore operating
systems. Students will study state-of-the-art approaches to cloud
computing followed by large cloud corporations, namely Google, Amazon,
Microsoft, and Yahoo. Students will also apply what they learn through
project developments using Amazon Web Services. Not for graduate CS
majors. Taught with: C S 522.
Prerequisite: At least a C- in C S 372; background in C S 484/C S 504 is
preferred or consent of instructor.
Learning Outcomes
1. The emphasis of the course will be on the understanding the

concepts and the engineering trade-offs involved in the design of
cloud computing systems

2. Cloud deployment models, cloud service models (software-as-a-
service, infrastructure- as-a-service, protocol-as-a-service), cloud
architecture, cloud-edge security, service level agreements, and load
balancing in cloud and datacenters

3. Learn about cloud computing, especially what are their fundamental
components, how these components interact, and how the
technology is evolving for the future (edge computing, cloudlets,
mobile edge computing, etc.).

C S 502. Database Management Systems I
3 Credits (3)
Database design and implementation; models of database management
systems; privacy, security, protection, recovery; taught with C S 482;
requires more advanced graduate work than C S 482. Students are

expected to have solid knowledge of data structures and discrete
mathematics.
Learning Outcomes
1. Utilize the basic concepts of relational database model
2. Utilize database query languages (e.g. SQL)
3. Identify data integrity and security requirements
4. Analyze, capture, and model user requirements for building database

systems using conceptual models
5. Design and normalize relational schemas
6. Apply application development methods to implement a database

system

C S 504. Computer Networks I
3 Credits (3)
Fundamental concepts of computer communication networks: layered
network architecture, network components, protocol stack and service.
Example of application, transport, network and data link layers, protocols
primarily drawn from the Internet (TCP, UDP, and IP) protocol suite; local
and wide area networks, wireless and mobile networks, multimedia
networks; network management and security; taught with C S 484;
requires more advanced graduate work than C S 484. Students are
expected to have solid knowledge of data structures, machine-level
programming. Knowledge of statistics (at the level of MATH 371 or MATH
470) is recommended.
Learning Outcomes
1. Explain the layered model of networking using the OSI and TCP/IP

models
2. Describe the purpose and concepts of each layer in the OSI and TCP/

IP models
3. Describe IP as a particular network layer protocol
4. Describe TCP and UDP as particular transport layer protocols
5. Describe Ethernet (802-11) and WiFi (802-15) as particular data link

layer protocols
6. Describe and analyze routing and routing issues
7. Describe and analyze data link layer switching
8. Describe the need for application protocols such as HTTP
9. Explain other network issues such as multicasting and audio/video

data streaming 1
10. Implement socket-based network programs

C S 505. Artificial Intelligence I
3 Credits (3)
Fundamental principles and techniques in artificial intelligence systems.
Knowledge representation formalisms; heuristic problem solving
techniques; automated logical deduction; robot planning methods;
algorithmic techniques for natural language understanding, vision
and learning; taught with C S 475; requires more advanced graduate
work than C S 475. Students are expected to have strong knowledge of
algorithms and data structures (at the level of C S 372).
Learning Outcomes
1. Use various search algorithms commonly used in problem-solving
2. Use methods for solving constraint satisfaction problems
3. Use propositional and first-order logic to represent knowledge
4. Use logical inference methods to derive conclusions from a

knowledge base
5. Use adversarial search for game-playing agents
6. Analyze the different search strategies
7. Design and Implement heuristic search for problem-solving

Computer Science 11

C S 506. Computer Graphics I
3 Credits (3)
Languages, programming, devices, and data structures for representation
and interactive display of complex objects. Taught with C S 476. Requires
more advanced graduate work than C S 476. Students are expected to
have knowledge of compilers design and software engineering equivalent
to C S 370 and C S 371.
Learning Outcomes
1. Techniques used in three-dimensional graphics
2. Computer Graphics lightning and shading
3. Client-server graphics using WebGL
4. Geometric and Solid modeling
5. Computer Graphics implementation algorithms

C S 508. Introduction to Data Mining
3 Credits (3)
Techniques for exploring large data sets and discovering patterns in
them. Data mining concepts, metrics to measure its effectiveness.
Methods in classification, clustering, frequent pattern analysis. Selected
topics from current advances in data mining. Students are expected
to have a preparation in Discrete Mathematics and Data Structures
equivalent to C S 272 and C S 278. Requires more advanced graduate
work than C S 488. Taught with: C S 488.
Learning Outcomes
1. Explain and recognize different data mining tasks such as data

pre-processing, visualization, classification, regression, clustering,
association rules, and anomaly detection

2. Apply classical data mining / machine learning algorithms for
classification, clustering, association rules, and anomaly detection

3. Evaluate and compare the performance of different data mining /
machine learning algorithms

4. Utilize data mining algorithms to analyze data in real applications
using a data mining tool

C S 509. Bioinformatics Programming
3 Credits (3)
Computer programming to analyze high-throughput molecular
biology data including genomic sequences, bulk and single-cell
transcriptome, epigenome, and other omics data. Quality control, library
size normalization, confounding effect removal, clustering, statistical
modeling, trajectory inference, and visualization. Taught with C S 489.
Requires more advanced graduate work than C S 489.
Learning Outcomes
1. Write R scripts and functions to manipulate biological sequences,

genome annotation, and gene expression data
2. Perform high-throughput data analysis with established R packages
3. Detect differential gene expression on RNA sequencing data
4. Perform single-cell RNA sequencing data analysis (quality control,

library size normalization, confounding effect removal, modeling)
5. Assess statistical significance of analytical results
6. Create automatic data analysis pipeline to link multiple software

packages

C S 510. Automata, Languages, Computability
3 Credits (3)
Regular and context-free languages, pushdown and finite-state automata,
Turing machines, models of computation, halting problems. Students are
expected to have knowledge of algorithms equivalent to C S 372. May be
repeated up to 3 credits.

Learning Outcomes
1. Describe the language accepted by an automaton or generated by a

regular expression or a context-free grammar
2. Design automata, regular expressions and context-free grammars

accepting or generating a certain language
3. Prove properties of languages, grammars, and automata with formal

mathematical methods
4. Convert between equivalent deterministic and non-deterministic finite

automata, and regular expressions
5. Convert between equivalent context-free grammars and pushdown

automata
6. Define Turing machines performing simple tasks

C S 513. Computer Security
3 Credits (3)
Introduction to the art and science of computer security.Fundamentals
of computer security including elementary cryptography, authentication
and access control, security threats, attacks, detection and prevention
in application software, operating systems, networks and databases.
Taught with C S 478. Requires more advanced graduate work than
C S 478. Recommended knowledge of materials in C S 272. May be
repeated up to 3 credits.
Prerequisite: At least a C- in C S 273 or consent of instructor.
Learning Outcomes
1. Describe fundamental concepts in security and privacy
2. Understand requirements of security in different contexts
3. Describe practical implementation challenges in security/privacy

system design
4. Explain at a high-level symmetric and public key cryptography
5. Explain various access control mechanisms such as authentication,

authorization
6. Understand aspects of secure system design that a computer

programmer/engineer needs to account for

C S 514. Introduction to Smart Grids
3 Credits (3)
This course is an introduction to the technologies and design strategies
associated with the Smart Grid. The emphasis will be on the development
of communications, energy delivery, coordination mechanisms, and
management tools to monitor transmission and distribution networks.
Topics include: Smart grid introduction and evolution; Power systems;
Networking and transport control; Artificial intelligence & agent
coordination; Data mining for smart grids. Taught with C S 494. Requires
more advanced work than C S 494. May be repeated up to 3 credits.
Prerequisite: At least a C- in C S 272 and a C- in ENGR 230; or Consent of
instructor.
Learning Outcomes
1. Get basic understanding of how conventional power system is

operated and protected
2. Understand and use basic knowledge of communication techniques

in smart grids
3. Understand and use basic knowledge for the coordination of the

different units in smart grids
4. Understand and apply data mining techniques for protecting smart

grids

C S 515. Human-Centered Computing
3 Credits (3)
Covers iterative, human-centered interface design, including prototyping
and evaluation. Basics of graphic design and visualization. Taught with

12 Computer Science

C S 485. Requires more advanced graduate work than C S 485 with an
emphasis on studying recent research in human-computer interaction.
Students are expected to have knowledge of software engineering
equivalent to C S 371.
Learning Outcomes
1. Describe, analyze, and/or critique a device interface using a design

vocabulary
2. Enact a human-centered process of interaction design: gather data;

develop a data-driven design; iterate design through testing; and
evaluate results

3. Conduct human-computer interaction research by proposing,
developing, and conducting experiments; analyzing data; and
developing synthesized results

4. Communicate design and evaluation with presentations, demos, and
reports

5. Implement a variety of interaction techniques

C S 516. Bioinformatics
3 Credits (3)
Introduction to bioinformatics and computational biology. Computational
approaches to sequences analysis, protein structure prediction and
analysis, and selected topics from current advances in bioinformatics;
taught with C S 486; requires more advanced graduate work than C S 486.
Students are expected to have a knowledge of algorithms and data
structures equivalent to C S 372 or exposure to Biology (equivalent to
BIOL 2310 or BIOL 311).
Learning Outcomes
1. Explain the biology motivation of a bioinformatics question
2. Formulate a computational problem and its solution to address a

molecular biology question
3. Implement basic bioinformatics algorithms such as sequence

alignment, pattern matching, and genome assembly
4. Evaluate the performance of a bioinformatics algorithm on real data

sets
5. Argue the correctness of a bioinformatics algorithm
6. Analyze the complexity of a bioinformatics algorithm

C S 517. Digital Game Design
3 Credits (3)
An introduction to digital game design. Topics include design,
development, and playtesting of games. The course is structured to use
team-based learning. Taught with C S 477. Requires more advanced
graduate work than C S 477 with deeper attention to a team game
project.
Learning Outcomes
1. Describe, analyze, and/or critique games with a consistent

vocabulary
2. Design, develop, and playtest games
3. Understand the formal systems of games
4. Communicate game designs through demonstrations and

presentations

C S 518. Visual Programming
3 Credits (3)
Design and implementation of programs using visual (i.e. dataflow or
diagrammatic) programming techniques, with an emphasis on real-time
data processing. Students will learn how to design visual programs,
including how to handle cycles and state maintenance, and will learn to
process audio, video, and other data using visual programs. Students

must be in graduate standing to enroll. Taught with C S 481. Requires
more advanced graduate work than C S 481.
Learning Outcomes
1. Develop software in graph-based visual environments
2. Understand flows of control in visual programming environments
3. Use signals, digital and analog, to drive software
4. Communicate software design and evaluation with presentations,

demos, and reports

C S 519. Applied Machine Learning I
3 Credits (3)
An introductory course on practical machine learning. An overview
of concepts for both unsupervised and supervised learning. Topics
include classification, regression, clustering, and dimension reduction.
Classical methods and algorithms such as linear regression, neural
networks, support vector machines, and ensemble approaches. Recent
techniques such as deep learning. Focused on applying of machine
learning techniques in application domains. Taught with: C S 487.
Requires more advanced graduate work than C S 487.
Learning Outcomes
1. Implement and utilize different data processing techniques
2. Differentiate and assess several dimension reduction techniques
3. Utilize several classifiers (SVM, Decision tree, k-Nearest Neighbor,

and logistic regression) and differentiate their advantages and
disadvantages

4. Explain and demonstrate regression analysis
5. Describe and illustrate clustering approaches
6. Apply ensemble learning approaches
7. Implement several neural network classifiers, including deep learning

models

C S 521. Parallel Programming
3 Credits (3)
Programming of shared memory and distributed memory machines; tools
and languages for parallel programming; parallelizing compilers; parallel
programming environments; taught with C S 491; requires more advanced
graduate work than C S 491. Students are expected to have knowledge
of programming and machine organization equivalent to C S 271 and
C S 273.
Learning Outcomes
1. Describe existing parallel architectures including shared memory

versus distributed memory platforms
2. Apply basic techniques for organizing parallel computations
3. Apply basic techniques for performance measurement and

theoretical limitations of parallelism
4. Explain alternative parallel techniques and hardware
5. Perform performance Analysis of different parallel programming

technices
6. Program shared memory machines using threads, processes, and the

OpenMP library
7. Program using a message passing paradigm and obtain working

knowledge of the Message Passing Interface (MPI)

C S 522. Cloud and Edge Computing
3 Credits (3)
The course presents a top-down view of cloud computing, from
applications and administration to programming and infrastructure. Its
main focus is on the concepts of networking and parallel programming
for cloud computing and large scale distributed systems which form the
cloud infrastructure. The topics include: overview of cloud computing,

Computer Science 13

cloud systems, parallel processing in the cloud, distributed storage
systems, virtualization, security in the cloud, and multicore operating
systems. Students will study state-of-the-art approaches to cloud
computing followed by large cloud corporations, namely Google, Amazon,
Microsoft, and Yahoo. Students will also apply what they learn through
project developments using Amazon Web Services. Might have additional
requirements for graduate students. To enroll in this course a background
in C S 484/C S 504 is preferred or have consent from the instructor.
Taught with: C S 496. Requires more advanced graduate work than
C S 496.
Learning Outcomes
1. The emphasis of the course will be on the understanding the

concepts and the engineering trade-offs involved in the design of
cloud computing systems

2. Cloud deployment models, cloud service models (software-as-a-
service, infrastructure- as-a-service, protocol-as-a-service), cloud
architecture, cloud-edge security, service level agreements, and load
balancing in cloud and datacenters

3. Learn about cloud computing, especially what are their fundamental
components, how these components interact, and how the
technology is evolving for the future (edge computing, cloudlets,
mobile edge computing, etc.).

C S 525. Introduction to Cryptography
3 Credits (3)
The course covers basic cryptographic primitives, such as symmetric,
public-key ciphers, digital signature schemes, and hash functions, and
their mathematical underpinnings. Course helps students understand
basic notions of security in a cryptographic sense: chosen plaintext
and chosen ciphertext attacks, games, and reductions. Course also
covers computational number theory relevant to cryptography. Consent
of Instructor required. Taught with: C S 380. Requires more advanced
graduate work than C S 380.
Prerequisite: C S 278 (or equivalent) with a C or better.
Learning Outcomes
1. Describe basic cryptographic primitives, including symmetric ciphers,

asymmetric ciphers, digital signatures, message authentication
codes, and hash functions.

2. Understand the mathematical, fundamental underpinnings of
cryptography, and how to reason about the security of crypto
primitives: indistinguishability (IND) properties of ciphertexts, CPA/
CCA games, and reductions to fundamental math assumptions;

3. Be able to discuss number theory/algebra underpinning the design of
cryptographic primitives, in some depth.

C S 532. Modern Web Technologies
3 Credits (3)
In this course, we will take a full-stack approach to modern web
application design. We will start with the fundamentals including HTML5,
CSS3, Javascript, JSON, and the underlying networking concepts
and protocols driving the modern web. We will then move on to more
advanced topics including javascript backend development with Node.js,
NoSQL database design with MongoDB, cloud computing, and re-
sponsive web design. Finally, we cover advanced topics including the
design and im- plementation of browser extensions and real-time web
technologies like WebRTC and WebSockets. Consent of Instructor
required. Taught with: C S 382. Requires more advanced graduate work
than C S 382.
Learning Outcomes
1. Understand the fundamental technologies and operation of the web.
2. Design and develop responsive interactive web sites.

3. Deploy web applications on Cloud Computing Platforms.
4. Leverage modern tools and packages to develop full stack web

applications.
5. Be fluent in the application of emerging web technologies like

browser extensions, WebSockets, and WebRTC.
6. Use existing materials and references on the web to learn new skills.

C S 533. Introduction to Deep Learning
3 Credits (3)
The course covers basic concepts of neural networks which include
transition of classical machine learning to hierarchical feature learning,
feedforward networks, regularization, optimization, hyperparameter
tuning, deep convolutional networks and their applications in computer
vision, deep sequence models, and deep generative models. Taught with
C S 383. Requires more advanced graduate work than C S 383. May be
repeated up to 3 credits.
Prerequisite: At least a C- in C S 272 or C S 153, and C S 278, or consent
of instructor.
Learning Outcomes
1. Have significant familiarity with different state-of-the-art theories and

practices of deep learning.
2. Be able to apply deep learning to a variety of tasks suitable for data

science-based projects of academia and industry.
3. Understand much of the current literature on the topic, review papers,

and extend their knowledge through further study.
4. Design and evaluate novel deep learning models.
5. Train and test deep learning models on real-life and benchmark

datasets using Python libraries such as TensorFlow and PyTorch.

C S 534. Graph Data Mining
3 Credits (3)
The course covers graph terminology, representation, and techniques
to extract patterns from large graph data. The topics include random
and scale-free graph generation, link analysis (PageRank), graph
representation learning, graph neural networks, deep graph generation,
community detection, frequent subgraph mining, graph classification,
influence maximization, and knowledge graph mining. Taught with
C S 384. Requires more advanced graduate work than C S 384. May be
repeated up to 3 credits.
Prerequisite: At least a C- in C S 272 or C S 153, and C S 278, or consent
of instructor.
Learning Outcomes
1. Have significant familiarity with different state-of-the-art theories and

practices of graph data mining.
2. Graph representation and graph querying using graph manipulating

toolbox/library.
3. Use random and scale-free graph models to generate graphs and

visualize complex network properties.
4. Apply algorithms such as PageRank, spectral clustering, and non-

negative matrix factorization.
5. Implement graph representation learning algorithms and graph neural

network.
6. Understand much of the current literature on the topic, review papers,

extend their knowledge through further study, and present findings of
the papers.

C S 570. Analysis of Algorithms
3 Credits (3)
Techniques for design and analysis of algorithms; time and space
complexity; proving correctness of programs. Particular algorithms such

14 Computer Science

as sorting, searching, dynamic programming. NP complete problems.
Students are expected to have knowledge of algorithms and data
structures equivalent to C S 372.
Learning Outcomes
1. Prove algorithm correctness by loop-invariant
2. Prove an algorithm to be incorrect by counterexamples
3. Develop efficient divide-and-conquer algorithms
4. Design and analyze binary search tree algorithms
5. Construct dynamic programming solutions
6. Prove the correctness of dynamic programming solutions by

contraposition
7. Traverse graphs efficiently
8. Find paths in graphs efficiently
9. Determine if a problem is NP-Complete or NP-Hard 1

10. Basic concepts of quantum computing

C S 573. Architectural Concepts II
3 Credits (3)
Advanced topics related to computer architecture, guided by the current
literature. Students are expected to have knowledge of computer
architectures equivalent to C S 473 and of operating systems equivalent
to C S 474. Crosslisted with: E E 564.
Learning Outcomes
1. Be able to explain the features in a modern multicore CPU

architecture
2. Be able to utilize hardware counter features of a CPU in performance

evaluation
3. Be able to explain the architecture of GPUs and their capabilities and

drawbacks
4. Be able to evaluate novel cutting-edge architectural features and

designs
5. Be able to present a research paper to an advanced audience

C S 574. Operating Systems II
3 Credits (3)
Advanced topics related to operating system principles, guided by the
current literature. Students are expected to have knowledge of computer
architectures and operating systems equivalent to C S 473 and C S 474.
Learning Outcomes
1. Further an understanding of the principles of operating systems.
2. Develop insight into process management and scheduling issues.
3. Understand memory management operation.
4. Develop an understanding of file system implementation and of

multiple levels of hardware support and management.
5. Develop a deep understanding of the concepts of cooperating

processes, including communication, synchronization, and deadlock
(detection and avoidance).

6. Be able to evaluate operating system features.
7. Develop an understanding of the distributed operating system

environment.

C S 575. Artificial Intelligence II
3 Credits (3)
Covers advanced theory and application of artificial intelligence.
Concentration on several specific research areas, such as knowledge
representation, problem solving, common-sense reasoning, natural
language understanding, automated tutoring systems, learning systems.
Students are expected to have knowledge of artificial intelligence
equivalent to C S 475.

Learning Outcomes
1. Apply selected planning algorithms in solving problems
2. Identify problems where knowledge representation and reasoning

techniques are applicable
3. Be able to apply answer set programming in problem solving
4. Be aware of various advanced research topics in Artificial Intelligence

C S 579. Special Topics
1-6 Credits
Topic announced in the Schedule of Classes.

C S 581. Advanced Software Engineering
3 Credits (3)
Advanced tools and methods for developing large software systems.
Topics include object-oriented modeling and design, component
architectures, templates and generic programming, software
configuration and revision control, static and dynamic analysis tools,
model, checking, advanced testing, and verification. Students are
expected to have knowledge of software engineering equivalent to
C S 371.
Learning Outcomes
1. Be able to explain modern software development process ideas
2. Be able to apply agile software development techniques in a project
3. Be able to specify, design, and develop a complex software system in

a team
4. Be able to properly utilize both black box and white box testing

techniques
5. Be able to explain how unsound and incomplete formal methods can

aid in system verification and validation
6. Be able to utilize sound and complete formal methods to prove

properties of a system

C S 582. Database Management Systems II
3 Credits (3)
Advanced data models and abstractions, dependencies, implementations,
languages, database machines, and other advanced topics. Students
are expected to have knowledge of data base management systems
equivalent to C S 482.
Learning Outcomes
1. Analyze storage and file structures of an RDBMS
2. Analyze and apply indexing techniques of an RDBMS
3. Analyze query evaluation approaches of an RDBMS
4. Analyze the mechanisms of transaction management in an RDBMS

C S 584. Computer Networks II
3 Credits (3)
Advanced topics in computer networks. Covers advanced topics in
networking, with emphasis on wireless, and IP networks. Students are
expected to have knowledge of computer networks equivalent to C S 484,
and of statistics equivalent to MATH 371 or MATH 470.
Learning Outcomes
1. Understand design of link layer protocols.
2. Understand challenges and implementations for multimedia

streaming.
3. Be able to use basic security constructs in the networking context.
4. Understand the concepts of edge and cloud computing
5. Understand the concepts and challenges of Internet of Things
6. Learn concepts of distributed networking
7. Learn and evaluate future internet architectures

Computer Science 15

C S 586. Algorithms in Systems Biology
3 Credits (3)
The course will introduce important algorithms and computational
models used in systems biology to study molecular mechanisms for
cellular dynamics, processes, and systems. Cellular processes, such
as metabolism and signal transduction, are studied as systems and
networks quantitatively from high throughput molecular measurements.
The topics include molecular biological systems, network alignment,
model simulation, network inference, model optimization, and hybrid
models. Students will be able to construct models and analyze their
properties in the context of molecular biological systems. Students are
expected to have knowledge of algorithms and data structures equivalent
to C S 372.
Learning Outcomes
1. Create mathematical representation of biological systems
2. Infer biological network topology from observed omics data set
3. Simulate the behavior of a biological system using a mathematical

model
4. Characterize behaviors of biological systems
5. Estimate parameters in a biological system model
6. Validate a model’s statistical relevance given observed data

C S 589. Special Research Problems
1-6 Credits (1-6)
Faculty-supervised investigation, to culminate in a written report.
Maximally 6 credits can be applied to the student program of study.
Written agreement with faculty supervisor is the required consent. May
be repeated up to 18 credits.
Learning Outcomes
1. Research experience for graduate student.

C S 598. Master's Project
1-6 Credits
Project-oriented capstone course to be completed by M.S. students under
supervision of their advisor. Maximum of 6 credits may be applied toward
M.S. degree. Restricted to C S majors.
Prerequisite: written agreement with instructor.

C S 599. Master's Thesis
1-6 Credits (1-6)
Thesis to be developed by M.S. Students under supervision of their
advisor. May be repeated for a maximum of 6 credits. Restricted to
majors.
Prerequisite: consent of instructor.

C S 600. Pre-dissertation Research
1-15 Credits
Pre-dissertation research.

C S 700. Doctoral Dissertation
1-15 Credits
Dissertation.

