INDUSTRIAL ENGINEERING - MASTER OF SCIENCE IN INDUSTRIAL ENGINEERING

New Mexico State University's master's accelerated program provides **the opportunity for academically qualified undergraduate students** to begin working on a master's degree **during their junior and senior years** while completing a bachelor's degree. Typically, a bachelor's degree requires four years to complete, and a master's degree requires an additional two years. The master's accelerated programs allow students the opportunity to complete a graduate program in an accelerated manner. Students can take up to 12 credits of approved I E courses and get dual course credits that can be applied to both an undergraduate and master's degree. You can also check NMSU's catalog for additional information about our programs.

MAP Requirements

- The Graduate School allows qualified junior or senior students to substitute its graduate courses for required or elective courses in an undergraduate degree program and then subsequently count those same courses as fulfilling graduate requirements in a related graduate program.
- Undergraduate students may apply for acceptance to the accelerated master's program after completing 60 semester hours of undergraduate coursework of which a minimum of 25 semester credit hours must be completed at NMSU.
- The grade point average must be at a minimum of 2.75.
- Students must receive a grade of B or higher in this coursework to be counted for graduate credit. If a grade of B- or lower is earned, it will not count toward the graduate degree.

Accepted MAP Courses

The following courses are accepted for use in the MAP program, any other I E 500+ courses may be considered after a consultation with an advisor. An exception will need to be made to the degree audit in order for the additional course(s) to be included on both the Undergraduate and Graduate degrees.

Prefix	Title	Credits
I E 451	Engineering Economy	3
I E 456	Large Scale Systems Engineering	3
I E 459	Systems Thinking and Decision Making	3
I E 460	Evaluation of Engineering Data	3
I E 466	Reliability	3
I E 467	Discrete-Event Simulation Modeling	3
I E 478	Facilities Planning and Design	3
I E 490	Selected Topics	3
I E 515	Stochastic Processes Modeling	3
I E 522	Queuing Systems	3
I E 523	Advanced Engineering Economy	3
I E 524	Advanced Production and Inventory Control	3
I E 525	Systems Synthesis and Design	3
I E 533	Linear Programming	3
I E 534	Nonlinear Programming	3
I E 535	Discrete Optimization	3
I E 537	Large Scale Systems Engineering	3

I E 545	Characterizing Time-Dependent Engineering Data	3
I E 561	Advanced Safety Engineering	3
I E 563	Topics in Engineering Administration	3
I E 567	Design and Implementation of Discrete-Event Simulation	3
I E 571	Advanced Quality Control	3
I E 575	Advanced Manufacturing Processes	3
I E 590	Selected Topics	3

1