CIVIL ENGINEERING -MASTER OF SCIENCE IN CIVIL ENGINEERING

In support of the mission and vision statements for the graduate program, the department adopts the following goals for the Master of Science (M.S.) in Civil Engineering degree:

- 1. Prepare students to fulfill the academic prerequisites specified by the Americans Society of Civil Engineers (ASCE) for Licensure and Professional Practice in Civil Engineering.
- 2. Prepare students to attain the Body of Knowledge specified by ASCE necessary for entry into the practice of civil engineering at the professional level.
- 3. Prepare students in conducting applied research in areas relevant to the practice of civil engineering.
- 4. Prepare students for advanced graduate studies towards a terminal degree.

Students may choose from the geotechnical, structural, or water resources engineering options following the Thesis or Non-Thesis track, requirements of which are specified below. Exceptions to these requirements must be approved by the head of the department. Further information related to the M.S. degree may be found under the Academic Programs of Study (https://catalogs.nmsu.edu/nmsu/regulationspolicies/) section of the catalog.

Option: Geotechnical Engineering

Thesis Track

Pre	fix	Title	Credits
Bac	kground Courses ⁴		
	C E 357	Soil Mechanics	
	C E 457	Foundation Design	
	GEOL 1110G	Physical Geology (or higher-level courses)	
	C E 445	Reinforced Concrete Design (or higher-level courses based on ACI)	
Cor	re Courses ¹		9
Sel	ect three from the fo	ollowing:	
	C E 508	Advanced Soil Behavior	
	C E 509	Deep Foundations	
	C E 579	Ground Improvement	
Optional Courses			12-13
Sel	ect four from the fo	llowing:	
	C E 452	Geohydrology	
	C E 460	Site Investigation	
	C E 470	Design of Municipal and Hazardous Waste Landfills	
	C E 479	Pavement Analysis and Design	
	C E 485	Design of Earth Dams	
	C E 507	Design of Earth Retaining Structures	
	C E 585	Slope Stability Analysis and Design	
Sel hig	ect 3 credits from c her) ²	ourses outside the area or department (450 or	3
Res	search Credits		6

C E 599	Master's Thesis ³	
Fotal Credits		30-31

- A course listed as core may be taken as one of the four optional courses if it is not counted already as one of the three core courses.
- The selected course outside the area or department must be previously approved by the academic advisor or student's Graduate Committee.
- A maximum of 6 credits are counted toward the Master's Degree program.
- 4 A course listed as background provides fundamental knowledge to pursue graduate studies in geotechnical engineering but does not satisfy the course requirements for the MS degree (exception: CE 457).

Total credits needed for the Thesis Track are 24 credits of coursework and 6 credits of C E 599 Master's Thesis research.

Non-Thesis Track

The background and core courses for the Non-Thesis Track in Geotechnical Engineering are the same as those listed under the Thesis Track. Under optional courses, Non-Thesis students must select one additional course (i.e., total of five optional courses) from the list provided for the Thesis Track. In addition, Non-Thesis students must complete 3 credits of CE 598 - Special Research Programs in place of 6 credits of CE 599 and pass a final exit exam covering coursework and their research project.

Total credits needed for the Non-Thesis Track are 27 credits of coursework and 3 credits of C E 598 Special Research Programs.

Option: Structural Engineering Thesis Track

Prefix	Title	Credits	
Background Courses ²			
C E 315	Structural Analysis		
C E 444	Elements of Steel Design (based on AISC)		
C E 445	Reinforced Concrete Design (based on ACI)		
Core Courses		15	
C E 501	Advanced Mechanics of Materials		
C E 515	Finite Element Methods		
C E 544	Advanced Design of Steel Structures		
C E 545	Advanced Concrete Design		
C E 571	Structural Dynamics		
Optional Courses ³		9	
Select three from the f	ollowing:		
C E 490	Introduction to Artificial Intelligence for Civil		
	Engineers		
C E 502	Advanced Mechanics of Steel Structures		
C E 504	Advanced Engineering Design		
C E 507	Design of Earth Retaining Structures		
C E 509	Deep Foundations		
C E 510	Introduction to Nondestructive Testing		
C E 547	Bridge Engineering		
C E 554	Wood Design		
C E 555	Masonry Design		
C E 590	Advanced Artificial Intelligence for Civil		
	Engineers		
Research Credits		6	

C E 599	Master's Thesis ¹	
Total Credits		30

- A maximum of 6 credits are counted toward the Master's Degree program.
- 2 A course listed as background provides fundamental knowledge to pursue graduate studies in structural engineering but does not satisfy the course requirements for the MS degree.
- A course listed as optional may replace one of the five core courses if it is not counted already as one of the three optional courses (requires department head approval)

Total credits needed for the Thesis Track are 24 credits of coursework and 6 credits of C E 599 Master's Thesis research.

Non-Thesis Track

The background and core courses for the Non-Thesis Track in Structural Engineering are the same as those listed under the Thesis Track. Under optional courses, Non-Thesis students must select one additional course (i.e., total of four optional courses) from the list provided for the Thesis Track. In addition, Non-Thesis students must complete 3 credits of CE 598 - Special Research Programs in place of 6 credits of CE 599 and pass a final exit exam covering coursework and their research project.

Total credits needed for the Non-Thesis Track are 27 credits of coursework and 3 credits of C E 598 Special Research Programs.

Option: Water Resources Engineering

Thesis Track

Prefix	Title	Credits
Requirements		
Core courses		12
Statistics		3
Area of Interest Courses		9
C E 599	Master's Thesis	6
Total Credits		30

Non-Thesis Track

Prefix	Title	C	Credits
Requirements			
Core courses			12
Statistics			3
Area of Interest Cours	es		15
Total Credits			30

Foundation Requirements

- 1. ABET- Accredited BS in Civil, Agricultural, Geological Engineering, or closely related field or equivalent (as per existing Civil Engineering Department regulations)
- 2. One course in surface water hydrology
- 3. One course in hydrogeology or geohydrology
- 4. At least three semesters of hydraulics and hydraulic design

Core Courses

Prefix	Title	Credits
Core Courses		12
C E 531	Open Channel Hydraulics	
C E 557	Water Resources Development	

Total Credits		15
A ST 505	Statistical Inference I (or advanced statistics class if student is qualified)	
Statistics		3
C E 582	Statistical Hydrology	
C E 581	Ground Water Hydrology	

Total Credits

Area of Interest Courses (Flexible)

Agricultural/ Civil/ Environmental Engineering

Prefix	Title	Credits
A EN 459	Groundwater, Wells & Pumps	
A EN 478	Irrigation and Drainage Engineering	
C E 452	Geohydrology	
C E 482	Hydraulic Structures	
C E 483	Surface Water Hydrology	
C E 485	Design of Earth Dams	
C E 503	Special Design and Analysis Program	
C E 504	Advanced Engineering Design	
C E 682	Topics in Hydrodynamics II	
ENVE 557	Surface Water Quality Modeling	
ENVE 630	Fate and Transport of Environmental Contaminants	
GEOG 581	GIS Design	
SOIL 652	Advanced Soil Physics	

Modeling/ Fluid Mechanics

Prefix	Title	Credits
M E 530	Intermediate Fluid Mechanics	
M E 533	Numerical Methods for Fluid Mechanics and Heat Transfer	

Management/Optimization

Prefix	Title	Credits
I E 533	Linear Programming	
I E 534	Nonlinear Programming	
I E 535	Discrete Optimization	

Electives outside College of Engineering: A ST, AEEC, GEOG, GEOL, MATH, STAT, and SOIL (must be approved by the Advisor and Committee Members).

Notes:

- 1. International students must be registered at least 9 credits per semester.
- 2. International students may be required to take English language courses to show proficiency in English.
- 3. At least half of the credits of the Master's Degree program must be 500 level or higher.

New Mexico State University master's accelerated program provides the opportunity for academically qualified undergraduate students to begin working on a master's degree during their junior and senior years while completing a bachelor's degree. Typically, a bachelor's degree requires four years to complete, and a master's degree requires an additional two years. The master's accelerated programs allow students the opportunity to complete a graduate program in an accelerated manner. You can also check NMSU's catalog for additional information about our programs.

Please talk to an CE faculty advisor about your MAP plan and develop a course plan in consultation with the advisor. The faculty advisor should preferably be from the CE area of your interest.

MAP Requirements

- The Graduate School allows qualified junior or senior students to substitute its graduate courses for required or elective courses in an undergraduate degree program and then subsequently count those same course as fulfilling graduate requirements in a related graduate program.
- Undergraduate students may apply for acceptance to the accelerated master's program after completing 60 semester hours of undergraduate coursework of which a minimum of 25 semester credit hours must be completed at NMSU.
- The grade point average must be at a minimum of 2.75.
- Students must receive a grade of B or higher in this coursework to be counted for graduate credit. If a grade of B- or lower is earned, it will not count toward the graduate degree.

Accepted MAP Courses

The following courses are accepted for use in the MAP program, any other courses may be considered after a consultation with an advisor. An exception will need to be made to the degree audit in order for the additional course(s) to be included on both the Undergraduate and Graduate degrees.

Prefix	Title	Credits
For students completin option:	ng their BSCE degree under the Geotechnical	
C E 457	Foundation Design	3
C E 470	Design of Municipal and Hazardous Waste Landfills	3
C E 471	Transportation Engineering	3
C E 477	Engineering Economics and Construction Management	3
C E 479	Pavement Analysis and Design	3
C E 485	Design of Earth Dams	3
C E 507	Design of Earth Retaining Structures	3
C E 508	Advanced Soil Behavior	3
For students completin option:	ng their BSCE degree under the Structural	
C E 457	Foundation Design	3
C E 469	Structural Systems	3
C E 471	Transportation Engineering	3
C E 477	Engineering Economics and Construction Management	3
C E 501	Advanced Mechanics of Materials	3
C E 510	Introduction to Nondestructive Testing	3
C E 554	Wood Design	3
C E 555	Masonry Design	3
For students completin option:	ng their BSCE degree under the Environmental	
C E 457	Foundation Design	3
C E 470	Design of Municipal and Hazardous Waste Landfills	3
C E 477	Engineering Economics and Construction Management	3

ENVE 456	Environmental Engineering Design	3
ENVE 459	Environmental Microbiology	3
ENVE 487	Air Pollution Control Systems Design	3
ENVE 550	Aquatic Chemistry	3
ENVE 551	Unit Processes/Operation of Water Treatment	3
ENVE 552	Unit Processes/Operation of Wastewater Treatment	3
For students completing their BSCE degree under the Water Resources option:		
A EN 459	Groundwater, Wells & Pumps	3
A EN 478	Irrigation and Drainage Engineering	3
C E 452	Geohydrology	3-4
C E 457	Foundation Design	3
C E 477	Engineering Economics and Construction Management	3
C E 482	Hydraulic Structures	3
C E 483	Surface Water Hydrology	3
C E 531	Open Channel Hydraulics	3
C E 557	Water Resources Development	3

NOTE: No more than 2 courses from any of the lists above can be applied in the MAP for the Master of Science in Civil Engineering (MSCE) degree.