MECHANICAL ENGINEERING AND AEROSPACE ENGINEERING

Undergraduate Program Information

The mission of the Mechanical and Aerospace Engineering Department at New Mexico State University is threefold:

• to educate those who will advance knowledge and become the future leaders of industry and academia;
• to conduct both basic and applied research in mechanical and aerospace engineering and related interdisciplinary areas; and
• to provide service to the profession, to the State of New Mexico, to the country, and to the future development of engineering worldwide.

A critical focus within the department is to afford undergraduates of varying backgrounds and abilities every opportunity for achieving success in the mechanical and aerospace engineering professions. To address this focus, the faculty of the Mechanical and Aerospace Engineering Department, with input from other constituents, have established the following program educational objectives that inform the overall undergraduate programs:

• Our graduates will gain relevant employment and/or pursue a graduate degree.
• Our graduates will advance in their level of workplace responsibility.

Graduate Program Information

Graduate programs of study are available leading to the degrees of

• Master of Science and Doctor of Philosophy in Aerospace Engineering,
• the Master of Science in Mechanical Engineering, and
• the Doctor of Philosophy in Engineering with a concentration in Mechanical Engineering.

Areas of active research in mechanical engineering include the following:

• experimental fluids with application to wind power,
• computational fluid dynamics,
• energy systems and components,
• thermal management,
• space transportation,
• modeling and analysis of machining processes,
• micromechanics and cross property connections,
• computational mechanics with application to material properties,
• renewable energy,
• nonlinear dynamics and vibration,
• reduced order modeling in multibody dynamics,
• structural dynamics and fluids,
• robotics,
• composite materials and nanomaterials.

Areas of active research in aerospace engineering include the following:

• vortex dynamics,
• flow control,
• aeroelasticity and flutter,
• space dynamics and control,
• spacecraft motion estimation,
• rarefied gasdynamics and space propulsion,
• ground simulation of reduced gravity environments,
• structural health monitoring, and
• unmanned aerial systems.

Laboratory facilities supporting graduate research include a large subsonic wind tunnel, a large water channel, a robotics, controls and UAS lab, a reduced gravity simulation lab, a space dynamics and controls lab, and a composite materials lab. A mechanical testing lab is also available in the College of Engineering.

In addition to fulfilling the basic requirements for admission to the Graduate School, applicants are expected to have an undergraduate degree equivalent to a BS in mechanical or aerospace engineering from a university accredited by ABET. Graduate students whose BS degree is in a discipline other than A E or M E will normally be required to take undergraduate courses in M E or A E in order to prepare for graduate course work; such undergraduate preparatory work will be determined by the graduate coordinator on a case by case basis. A candidate for the master’s degree can choose one of two options: a thesis option or a course-only option. Both options require a minimum of 30 credits of graduate study.

Doctoral candidates must complete a program of study determined by the student and his or her advisory committee. The student must successfully pass a written qualifying examination (administered during the student’s first year of full-time study) and an oral comprehensive examination administered after approximately 80 percent of the course work is completed. The student must submit and defend an acceptable dissertation based on independent investigation in a field of study approved by the advisory committee. The requirements for the MS and Ph.D. degrees are stated below.

Degrees for the Department

Aerospace Engineering - Bachelor of Science in Aerospace Engineering (http://catalogs.nmsu.edu/nmsu/engineering/mechanical-aerospace-engineering/aerospace-engineering-bachelor-science-aerospace-engineering)

Mechanical Engineering - Bachelor of Science in Mechanical Engineering (http://catalogs.nmsu.edu/nmsu/engineering/mechanical-aerospace-engineering/mechanical-engineering-bachelor-science-mechanical-engineering)

Aerospace Engineering - Master of Science in Aerospace Engineering (http://catalogs.nmsu.edu/nmsu/engineering/mechanical-aerospace-engineering/aerospace-engineering-master-science-aerospace-engineering)

Mechanical Engineering - Master of Science in Mechanical Engineering (http://catalogs.nmsu.edu/nmsu/engineering/mechanical-aerospace-engineering/mechanical-engineering-master-science-mechanical-engineering)

Engineering - Doctor of Philosophy (http://catalogs.nmsu.edu/nmsu/engineering/mechanical-aerospace-engineering/engineering-doctor-philosophy)

Minors for the Department

Aerospace Engineering - Undergraduate Minor (http://catalogs.nmsu.edu/nmsu/engineering/mechanical-aerospace-engineering/aerospace-engineering-undergraduate-minor)

Mechanical Engineering - Undergraduate Minor (http://catalogs.nmsu.edu/nmsu/engineering/mechanical-aerospace-engineering/mechanical-engineering-undergraduate-minor)

Professor, Ruey-Hung Chen, Department Head

Associate Professor, Gabe Garcia, Associate Department Head

Professor Chen, Ma, Sevostianov; Associate Professors Choo, Conley, Garcia, Lee, Park, Shashikanth, Shu; Assistant Professors Abdelkefi, Drach, Gross, Kota, Kuravi, Sun


Registered Professional Engineer (State other than NM)

A E 339. Aerodynamics I
3 Credits
Fluid properties, conservation equations, incompressible 2-dimensional flow; Bernoulli’s equation; similarity parameters; subsonic aerodynamics: lift and drag, analysis and design of airfoils. May be repeated up to 3 credits. Restricted to: A E majors.
Prerequisite(s): M E 234 or M E 237 and M E 228 or MATH 392.

A E 362. Orbital Mechanics
3 Credits
Dynamics of exoatmospheric flight of orbiting and non-orbiting bodies; 2-body orbital dynamics and Kepler’s laws; orbits in 3 dimensions; orbit determination; orbit design and orbital maneuvers; lunar and interplanetary trajectories. May be repeated up to 3 credits.
Prerequisite(s): M E 228 or MATH 392, M E 234 or M E 237, and M E 261.

A E 363. Aerospace Structures
3 Credits
Advanced concepts of stress and strain, introduction to the analysis of aero structures, complex bending and torsion, thin walled sections and shells, computational techniques. Prerequisites: C E 301

A E 364. Flight Dynamics and Controls
3 Credits
Fundamentals of airplane flight dynamics, static trim, and stability; spacecraft and missile six degree of freedom dynamics; attitude control of spacecraft. May be repeated up to 3 credits.
Prerequisite(s): M E 228 or MATH 392, M E 234 or M E 237, and M E 261.

A E 400. Undergraduate Research
1-3 Credits (1-3)
Performed with the direction of a department faculty member. May be repeated for a maximum of 6 credits.
Prerequisite(s): Consent of faculty member.

A E 405. Special Topics
3 Credits
Topics of modern interest to be offered by the departmental staff. Consent of instructor required.

A E 419. Propulsion
3 Credits
Propulsion systems, thermodynamic cycles, combustion, specific impulse; principles of gas turbines, jet engines, and rocket propulsion systems. Prerequisites: A E 439

A E 424. Aerospace Systems Engineering
3 Credits
Basic principles of top down systems engineering and current practice; preliminary and detailed design of aircraft and space vehicles, including requirement, subsystem interaction, and integration, tradeoffs, constraints and non-technical aspects.
Prerequisite(s): A E 362.

A E 428. Aerospace Capstone Design
3 Credits
Team Project-analysis, design, hands-on build test, evaluate.
Prerequisite(s)/Corequisite(s): A E 447. Prerequisite(s): A E 363 and A E 424.

A E 439. Aerodynamics II
3 Credits
Principles of compressible flow, momentum and energy conservation; thermal properties of fluids; supersonic flow and shock waves; basics of supersonic aerodynamics.
Prerequisite(s): A E 339, M E 240, and M E 328.
A E 447. Aerofluids Laboratory
3 Credits (2+3P)
Use of subsonic wind tunnels and other flow to study basic flow phenomena and methods of fluid measurement and visualization.
Prerequisite(s)/Corequisite(s): A E 439. Prerequisite(s): M E 345.

A E 451. Aircraft Design
3 Credits
Conceptual design of aircraft based on existing designs, empirical relationships, and theory. Dimensioning, structural design, and performance analysis of major subcomponents such as fuselage, wing, and propulsion system. Static stability and control analysis.
Prerequisite(s): A E 339 and A E 363.

A E 509. Individualized Study
3 Credits
Individualized study covering specialized topics in aerospace engineering. Consent of instructor required. Restricted to A E & M E majors.

A E 510. Special Topics
1-6 Credits (1-6)
Topics in aerospace engineering. May be repeated for a maximum of 6 credits. Consent of instructor required.

A E 527. Control of Mechanical Systems
3 Credits
Rigorous introduction to the control of dynamical systems, with a focus on classical systems. Includes basic systems theory, controllability, feedback and stabilization, observers and dynamic feedback, and applications of methods to systems of importance in mechanical engineering. Consent of instructor required. Cross-listed with: M E 527

A E 529. Nonlinear and Optimal Control
3 Credits
Introduction to optimal control theory, Pontryagin's Maximum Principle, control of simple mechanical systems, Lagrangian and Hamiltonian methods, introduction to geometric control-Lie algebras, distributions, controllability and observability. Cross-listed with: M E 529

A E 552. Introduction to Gasdynamics
3 Credits
Gas kinetics, rarefied gas dynamics, collision dynamics; velocity distribution function, finite rate chemical process; thermal nonequilibrium and chemically reacting flows; introduction to quantum and statistical mechanics; Boltzmann equation and the BGK model; moments of the Boltzmann Equation; the Navier-Stokes Equation; the structure of shock waves.

A E 562. Astrodynamics
3 Credits
Two-body problem, orbit analysis, and classical orbit determination methods; trajectory design and optimization; orbital maneuvers using impulsive or continuous thrust; relative motion and rendezvous; perturbations and Lagrange planetary equations; interplanetary mission design including gravity assists; introduction to the three-body problem, halo orbits, and invariant manifolds in mission design.

A E 566. Aeroelasticity
3 Credits
Introduction to aeroelasticity with emphasis on fluid-structure interactions occurring in aircraft. Phenomena considered include flutter/LCD (limit cycle oscillation), buffeting, divergence, and control reversal. Primary emphasis on structural dynamics, with use of simple aerodynamic models.

A E 598. Special Research Programs
1-3 Credits (1-3)
Individual investigations, either analytical or experimental. May be repeated for a maximum of 6 credits. Restricted to A E & M E majors.

A E 599. Master's Thesis
15 Credits (15)

A E 600. Doctoral Research
1-15 Credits (1-15)
This course number is used for assigning credit for research performed prior to successful completion of the doctoral qualifying examination. Graded: Thesis/Dissertation.

A E 700. Doctoral Dissertation
15 Credits (15)

M E 102. Mechanical Engineering Orientation
1 Credit
Emphasis on tours of M E labs and NMSU facilities that illustrate possible career paths for mechanical engineers. Students are introduced to department faculty, student organizations, and support services at NMSU. Topics include role of good communication skills, using modern technology, team building, and intellectual property. Students are advised in planning balance of their academic program. Restricted to majors.

M E 159. Graphical Communication and Design
2 Credits (1+3P)
Sketching and orthographic projection. Covers detail and assembly working drawings, dimensioning, tolerance specification, and design projects. Pre/Corequisite(s): MATH 190G.

M E 201. Supplemental Instruction to Dynamics
1 Credit
Optional workshop for students in M E 237. The workshop focuses on problem solving skills associated with M E 237. Course does not count toward departmental degree requirements. May be repeated up to 1 credits. Restricted to Las Cruces campus only.
Corequisite(s): M E 237.

M E 202. Supplemental Instruction to Thermodynamics
1 Credit
Optional workshop for students in ME 240. The workshop focuses on problem solving skills associated with ME240. Course does not count toward departmental degree requirements. Restricted to Las Cruces campus only.
Corequisite(s): M E 240.

M E 210. Electronics and System Engineering
3 Credits (2+3P)
Introduction to microcontrollers, measurement systems, motion actuators, sensors, electric circuits, and electronic devices and interfacing. Students required to work individually and in teams to design and test simple electromechanical systems. Restricted to Las Cruces campus only.
Prerequisite(s): MATH 192.
M E 222. Introduction to Product Development
3 Credits (2+3P)
Introduction to modern methods used in the realization of products. Traditional manufacturing processes, such as metal stamping, turning, milling, and casting are reviewed. Modern methods of rapid prototyping and model making are discussed in context of computer-aided design. Techniques for joining metals, plastics, and composites are discussed. Role of quality control is introduced.
Prerequisite: M E 159.

M E 228. Engineering Analysis I
3 Credits
Introduction to engineering analysis with emphasis on engineering applications. Topics include ordinary differential equations, linear algebra, and vector calculus with focus on analytical methods. Restricted to Las Cruces campus only.
Prerequisite(s): MATH 291.

M E 234. Mechanics-Dynamics
3 Credits
Kinematics and dynamic behavior of solid bodies utilizing vector methods.
Prerequisite(s)/Corequisite(s): MATH 291G. Prerequisite(s): C E 233.

M E 236. Engineering Mechanics I
3 Credits
Force systems, resultants, equilibrium, distributed forces, area moments, friction, and kinematics of particles. Pre/ Restricted to: Main campus only.
Prerequisite(s): MATH 192G.
Corequisite(s): PHYS 215G.

M E 237. Engineering Mechanics II
3 Credits
Kinetics of particles, kinematics and kinetics rigid bodies, systems of particles, energy and momentum principles, and kinetics of rigid bodies in three dimensions. May be repeated up to 3 credits.
Prerequisite(s)/Corequisite(s): MATH 291. Prerequisite(s): M E 236 or C E 233.

M E 240. Thermodynamics
3 Credits
First and second laws of thermodynamics, irreversibility and availability, applications to pure substances and ideal gases.
Prerequisite: PHYS 215G.

M E 261. Mechanical Engineering Problem Solving
3 Credits (2+3P)
Introduction to programming syntax, logic, and structure. Numerical techniques for root finding, solution of linear and nonlinear systems of equations, integration, differentiation, and solution of ordinary differential equations will be covered. Multi function computer algorithms will be developed to solve engineering problems.
Prerequisite(s): MATH 192.

M E 301. Supplemental Instruction to Engineering Analysis II
1 Credit
Optional workshop for students in ME 328. The workshop focuses on problem solving skills associated with ME328. Course does not count toward departmental degree requirements. May be repeated up to 1 credit.
Corequisite(s): M E 328.

M E 302. Fluids Supplemental Instruction
1 Credit
Optional workshop for students in ME 338 or AE 339. The workshop focuses on problem solving skills associated with fluid mechanics. Course does not count toward departmental degree requirements.
Corequisite(s): M E 338 or A E 339.

M E 326. Mechanical Design
3 Credits
Design methodology and practice for mechanical engineers. May be repeated up to 3 credits.
Prerequisite(s): M E 234 or M E 237 and C E 301.

M E 328. Engineering Analysis II
3 Credits
Advanced engineering analysis with emphasis on engineering applications. Topics include systems of ordinary differential equations, Fourier analysis, partial differential equations, and functions of complex variable with focus on analytical methods. May be repeated up to 3 credits.
Prerequisite(s): M E 228 or MATH 392.

M E 330. Environmental Management Seminar I
1 Credit
Survey of practical and new developments in hazardous and radioactive waste management provided through a series of guest lectures and reports of ongoing research. Restricted to: Main campus only. Restricted to M E majors. Crosslisted with: C E 330, CH E 330, E E 330, E S 330, I E 330, WERC 330 and E T 330

M E 331. Intermediate Strength of Materials
3 Credits
Covers stress and strain, theories of failure, curved flexural members, flat plates, pressure vessels, buckling, and composites. May be repeated up to 3 credits.
Prerequisite(s): C E 301 and M E 328 or MATH 392.

M E 332. Vibrations
3 Credits
Vibration of single and n-degree of freedom systems considering free, forced, and damped motion. Lagrange's equations. Dynamic stability. Controls. Matrix iteration. May be repeated up to 3 credits.
Prerequisite(s): M E 328, M E 234 or M E 237, and M E 261.

M E 333. Intermediate Dynamics
3 Credits
Three dimensional kinematics and kinetics, orbital motion, Lagrange's equations, dynamic stability, and controls. May be repeated up to 3 credits.
Prerequisite(s): M E 328 and M E 234 or M E 237.

M E 338. Fluid Mechanics
3 Credits
Properties of fluids. Fluid statics and fluid dynamics. Applications of the conservation equations continuity, energy, and momentum to fluid systems. May be repeated up to 3 credits. Restricted to: M E majors.
Prerequisite(s): M E 234 or M E 237 and M E 228 or MATH 392.

M E 340. Applied Thermodynamics
3 Credits
Thermodynamic cycles, Maxwell relations, Gibbs and Helmholtz functions, mixtures, psychrometric, chemical reactions, chemical equilibrium.
Prerequisite: M E 240.
M E 341. Heat Transfer
3 Credits
Fundamentals of conduction, convection, and radiation. Design of heat transfer systems. May be repeated up to 3 credits.
Prerequisite(s): M E 240 and M E 228 or MATH 392.

M E 345. Experimental Methods I
3 Credits (2+3P)
Emphasis on experimental techniques, basic instrumentation, data acquisition and analysis, and written presentation of results. Includes experiments in dynamics and deformable body mechanics. May be repeated up to 3 credits.
Prerequisite(s)/Corequisite(s): C E 301. Prerequisite(s): M E 228 or MATH 392, M E 210, and M E 234 or M E 237.

M E 400. Undergraduate Research
1-3 Credits
Performed with the direction of a department faculty member. May be repeated for a maximum of 6 credits.
Prerequisite: consent of faculty member.

M E 401. Heating/Air-Conditioning System
3 Credits
HVAC system design including heating and cooling load calculations, psychometrics, piping, duct layout, and system control. May be repeated up to 3 credits.
Prerequisite(s): M E 340 and M E 341.

M E 405. Special Topics
3 Credits
Topics of modern interest to be offered by the departmental staff. May be repeated up to 12 credits.
Prerequisite(s): Senior standing.

M E 425. Design of Machine Elements
3 Credits
Design of machine elements through the application of mechanics. Fatigue and theories of failure. Design projects assigned.
Prerequisite(s): M E 326.

M E 426. Design Project Laboratory I
3 Credits
Students address a design problem in which innovation and attention to detail are emphasized. Solution of the problem entails applications of mechanics and/or the thermal sciences.
Prerequisite(s)/Corequisite(s): M E 425.

M E 427. Design Project Laboratory II
3 Credits
Continuation of M E 426.
Prerequisite: M E 426.

M E 445. Experimental Methods II
3 Credits (2+3P)
Emphasis on experimental techniques, instrumentation and data acquisition in fluid mechanics, heat transfer, and thermodynamics. Laboratory results will be presented in written and verbal formats.
Prerequisite(s): M E 338 or A E 339), M E 340, M E 341, and M E 345.

M E 449. Mechanical Engineering Senior Seminar
1 Credit
Senior seminar course covering topics relevant to graduating mechanical engineering seniors (job placement, interviewing techniques, resume preparation).
Prerequisite: senior standing.

M E 452. Introduction to Automation and Control System Design
3 Credits (2+3P)
Control system design and implementation. Emphasis on practical applications of traditional control algorithms to mechanical engineering applications in thermo-fluid systems and mechanical systems. Design of feedback analog and digital control systems. Introduction to robots and automation. Lab assignments include programming industrial robotic and automation systems. May be repeated up to 3 credits.
Prerequisite(s): M E 328 and M E 234 or M E 237, or consent of instructor.

M E 456. Experimental Modal Analysis
3 Credits
Emphasis on hands-on techniques for structural vibration tests for practical applications. Interpretation of experimental results by means of advanced signal processing tools, basic system identification methodology, and reduced-order modeling procedures. May be repeated up to 3 credits.
Prerequisite(s): M E 332, M E 228 or MATH 392, and M E 261, or consent of instructor.

M E 460. Applied Finite Elements
3 Credits
Introduction to the practical aspects of structural finite element modeling. Course focuses on providing a working knowledge of how to effectively incorporate finite element techniques into the design process. May be repeated up to 3 credits.
Prerequisite(s): M E 425.

M E 481. Alternative and Renewable Energy
3 Credits
Current and future energy needs of the United States and the world will be considered primarily from the standpoint of renewable energy sources such as solar, wind, ocean, and biomass. Technical, economic, and environmental aspects of each technology will be addressed.
Prerequisite(s): M E 341, and (M E 338 or A E 339).

M E 483. Introduction to Combustion
3 Credits
Combustion is one of the most fundamental phenomena related to human activities, such as obtaining thermal energies. Fundamental phenomena and physics related to combustion will be discussed, including thermodynamics, chemical reactions; combustion kinetics, premixed and diffuse flames, and examples. May be repeated up to 3 credits.
Prerequisite(s): CHEM 112G, M E 228 or MATH 392, and M E 340.

M E 487. Mechatronics
3 Credits (2+3P)
Introduction to the analysis and design of computer-controlled electromechanical systems, including data acquisition and conversion, force and motion sensors, actuators, mechanisms, feedback control, and robotic devices. Students required to work in teams to construct and test simple robotic systems. May be repeated up to 3 credits.
Prerequisite(s): M E 210 or E E 201 and M E 345.

M E 502. Elasticity I
3 Credits
Introduction to stress tensor, strain tensor, constitutive law, energy theorems, plane stress and plane strain. Also covers torsion of shafts and propagation of stress waves in elastic solids.

M E 503. Thermodynamics
3 Credits
A comprehensive study of the first and second laws of thermodynamics, nonequilibrium processes, equations of state, and statistical thermodynamics.
M E 504. Continuum Mechanics
3 Credits
Basic introduction to the Mechanics of Continuous Media. Its aim is to prepare the student for more advanced courses in Solid and Fluid Mechanics. The topics to be covered include: introduction to Cartesian tensors, tensor algebra and calculus; Lagrangian and Eulerian kinematics; Cauchy and Piola-Kirchhoff stresses; general principles of conservation; constitutive theory for ideal fluids, Newtonian and non-Newtonian fluids, finite and linear elasticity.

M E 505. Fundamentals of the Theory of Plasticity
3 Credits
Basic concepts in continuum mechanics, equations of the plastic state, equations of elastic-plastic equilibrium, criteria for yielding, initial and subsequent yield surfaces, two-dimensional and axi-symmetric plasticity problems, dynamic problems.
Prerequisite(s): M E 502.

M E 509. Individualized Study
3 Credits
Individualized study covering specialized topics in mechanical and aerospace engineering. Consent of instructor required.

M E 510. Special Topics
1-6 Credits
Topics in mechanical engineering. May be repeated for a maximum of 6 credits.
Prerequisite: consent of the department head.

M E 511. Dynamics
3 Credits
An advanced study of the dynamical behavior of systems of particles and rigid bodies, with emphasis on the theoretical background of dynamics.

M E 512. Vibrations
3 Credits
Free and forced vibrations for discrete and continuous systems with single or multiple degrees of freedom. Introduction to nonlinear and random vibration and solution techniques for such systems.

M E 514. Advanced Composite Materials
3 Credits
Study on the anisotropic elasticity, strength of anisotropic materials and micromechanics. Topics from micromechanics and macromechanics through lamination theory and examples of plate bending, buckling and vibration problems. Course taught on an as-needed basis.

M E 517. Nonlinear Dynamics and Chaos
3 Credits
Singular points, periodic solutions, stability, and local bifurcations for ODEs and maps; phase space methods, invariant manifolds, and Poincare maps; nonsmooth, periodic, time-delay, and Hamiltonian systems; perturbation, averaging, and harmonic balance methods; center manifold reduction and normal forms; strange attractors, Liapunov exponents, attractor dimension; dissipative and Hamiltonian chaos

M E 518. Finite Element Analysis
3 Credits
Introduction to finite element method. Topics include mathematical modeling, variational formulation, shape functions, truss, beam, solid, and shell elements. Includes static, dynamic, and nonlinear analysis.

M E 520. Micromechanics
3 Credits
The course covers fundamentals of micromechanics: point force solution, Eshelby’s problem, various approximate methods to calculate effective material properties of inhomogeneous materials, variational principles of the mechanics of composites. The history of micromechanics is discussed from Navier and Cauchy to current state of the art.
Prerequisite(s): M E 502.

M E 527. Control of Mechanical Systems
3 Credits
Rigorous introduction to the control of dynamical systems, with a focus on mechanical systems. Includes basic systems theory, controllability, feedback and stabilization, observers and dynamic feedback, and applications of methods to systems of importance in mechanical engineering. Consent of Instructor required. Crosslisted with: A E527.
Prerequisite(s): M E 452 or equivalent, or consent of instructor.

M E 529. Nonlinear and Optimal Control
3 Credits
Introduction to optimal control theory, Pontryagin’s Maximum Principle, control of simple mechanical systems, Lagrangian and Hamiltonian methods, introduction to geometric control-Lie algebras, distributions, controllability and observability

M E 530. Intermediate Fluid Mechanics
3 Credits
Application of exact and empirical solutions to fundamental flow problems, including viscous and inviscid behavior. These applications establish a theoretical basis for the origin and physical role of common terms in the governing equations.

M E 533. Computational and Theoretical Fluid Mechanics
3 Credits
Application of fluid mechanics theory and computational approaches to advanced flow problems, including viscous/inviscid and laminar/turbulent behavior. Complex flow problems addressed through development of a theoretical formulation, followed by application of computational fluid dynamic (CFD) tools, and finally presentation and validation of solution data.
Prerequisite: M E 530 or consent of instructor.

M E 534. Advance Computational Fluid Dynamics
3 Credits
Advanced techniques for large-scale numerical simulations of fluid flows: spectral numerical methods, including Fourier and other expansions, Galerkin and collocation projections, computational methods to solve incompressible and compressible Navier-Stokes equations, high-resolution methods for hyperbolic equations with discontinuous solutions, and issues related to implementation on supercomputers.
Prerequisite(s): M E 533.

M E 536. Hydrodynamic Stability and Turbulence
3 Credits
Introduction to fundamentals of hydrodynamic stability, classical linear stability analysis of parallel shear flows and rotating flows, nonlinear stability, basic concepts in turbulence theory
Prerequisite(s): M E 533.

M E 540. Intermediate Heat Transfer
3 Credits
Fundamentals of conduction, convection, and radiation heat transfer. Emphasis on the application of combined heat transfer to the solution of problems not accessible at the undergraduate level.
M E 570. Engineering Analysis I
3 Credits
Introduction to engineering analysis with emphasis on engineering applications. Topics include linear algebra, linear ordinary differential equations, and linear partial differential equations, with focus on analytical methods.

M E 580. Engineering Analysis II
3 Credits
Engineering analysis with emphasis on engineering applications. Topics include analytical and numerical methods in linear and nonlinear ordinary and partial differential equations.
Prerequisite: M E 570 or consent of instructor.

M E 598. Special Research Programs
1-3 Credits
Individual investigations, either analytical or experimental. May be repeated for a maximum of 6 credits.

M E 599. Master's Thesis
15 Credits
Thesis.

M E 600. Doctoral Research
1-15 Credits
This course number is used for assigning credit for research performed prior to successful completion of the doctoral qualifying examination.

M E 698. Special Research Programs
1-3 Credits
May be repeated for a maximum of 6 credits.

M E 700. Doctoral Dissertation
15 Credits
Dissertation.

Name: Margaret Vasquez
Office Location: Jett Hall Rm. 104
Phone: (575) 646-3502
Website: http://mae.nmsu.edu/