ELECTRICAL ENGINEERING (POWER) - BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

Overview

The Bachelor of Science in Electrical Engineering (B.S. EE) program of the Klipsch School is accredited by the Engineering Accreditation Commission of ABET, Inc. This particular concentration in the B.S. EE program gives students the opportunity to explore more deeply the area of power systems.

Electrical Engineering Program Educational Objectives

Below are the program educational objectives (PEOs) that describe the expected accomplishments of graduate during their first few years after graduation.

1. Our graduates will obtain relevant, productive employment in the private sector, government and/or pursue an advanced degree.
2. Our graduates will be using their engineering foundation to innovate solutions to the problems of the real world.

Requirements (123-124 credits)

Students must complete all University degree requirements, which include: General Education requirements, Viewing a Wider World requirements, and elective credits to total at least 123 credits with 48 credits in courses numbered 300 or above. Developmental coursework will not count towards the degree requirements and/or elective credits, but may be needed in order to take the necessary English and Mathematics coursework.

BSEE students must earn a grade of C - or better in all engineering, technology, math and science courses (including associated prerequisite courses) required for the degree and also courses taken to satisfy the general education requirements for Area I-Communications, Area IIMathematics, and Area III-Laboratory Sciences. If a grade lower than C - is earned in any of these courses, the student is required to retake the course immediately the next semester it is offered. Students who earn a grade less than a C - the first time will be contacted by the department and/or academic advising center and advised about this policy and resources to help in their academic success. If the student fails to achieve a C- or better in any of these courses a second time, then the student must submit a written request to the Associate Dean of Academics in the College of Engineering to enroll in the course a third time. The student should explain the circumstances impacting their grade and the actions planned to improve their performance.

Prefix \quad Title	Credits
General Education	
Area I: Communications	
English Composition - Level 1	
ENGL 1110G Composition I	4
English Composition - Level 2	
Oral Communication	
Area II: Mathematics	3
MATH 1511G \quad Calculus and Analytic Geometry I	
Area IIIIV: Laboratory Sciences and Social/Behavioral Sciences	3

CHEM 1215G	General Chemistry I Lecture and Laboratory for STEM Majors	
PHYS 1310G \& PHYS 1310L	Calculus -Based Physics I and Calculus -Based Physics I Lab	
Area IV: Social/Behavioral Sciences (3 credits) ${ }^{1}$		
Area V: Humanities ${ }^{1}$		3
Area VI: Creative and Fine Arts ${ }^{1}$		3
General Education Elective		
MATH 1521G	Calculus and Analytic Geometry II	4
Viewing A Wider World ${ }^{3}$		
Viewing a Wider World Electives		6
Departmental/College Requirements		
Program Specific Requirements		
Mathematics and Natural Science		
MATH 3160	Introduction to Ordinary Differential Equations	3
PHYS 1320 G \& PHYS 1320L	Calculus -Based Physics II and Calculus -Based Physics II Lab	4
ENGR 190	Introduction to Engineering Mathematics	4
E E 200	Linear Algebra, Probability and Statistics Applications	4
E E 240	Multivariate and Vector Calculus Applications	3
STEM		
Choose two STEM Electives ${ }^{4}$		6
Electrical and Computer Engineering		
ENGR 120	DC Circuit Analysis	4
ENGR 130	Digital Logic	4
ENGR 140	Introduction to Programming and Embedded Systems	4
ENGR 230	AC Circuit Analysis	4
E E 300	Cornerstone Design	2
E E 317	Semiconductor Devices and Electronics I	4
E E 320	Signals and Systems I	3
E E 325	Signals and Systems II	4
E E 340	Fields and Waves	4
E E 362	Introduction to Computer Organization	4
ENGR 401	Engineering Capstone ${ }^{5}$	3
ENGR 402	Engineering Capstone II	3
E E Concentration Required Courses		
E E 333	AC Circuit Analysis and Introduction to Power Systems ${ }^{6}$	3
E E 431	Power Systems II ${ }^{6}$	3
or E E 542	Power Systems II	
or E E 475	Control Systems Synthesis	
or E E 551	Control Systems Synthesis	

E E Concentration Electives: Choose two courses from the following (one 6
must be an E E course): ${ }^{7}$

E E 405	Electricity Markets
or E E 502	Electricity Markets
E E 431	Power Systems II ${ }^{8}$
or E E 542	Power Systems II
E E 432	Power Electronics
or E E 537	Power Electronics
E E 433	Power System Operation
or E E 533	Power System Operation
E E 440	Photovoltaic Devices and Systems
or E E 540	Photovoltaic Devices and Systems
E E 475	Control Systems Synthesis ${ }^{8}$
or E E 551	Control Systems Synthesis

E E 493 or E E 543	Power Systems III Power Systems III
C S 343	Algorithm Design \& Implementation
MATH 4230	Applied Linear Algebra
Non-Departmental Requirements (in addition to Gen.Ed/VWW)	
Programming Elective	
Select one course from the following: 3-4	
$\begin{aligned} & \text { CS } 151 \\ & \quad \text { or C S } 451 \end{aligned}$	C++ Programming ${ }^{9}$ C++ Programming
$\begin{aligned} & \text { CS } 152 \\ & \quad \text { or CS } 452 \end{aligned}$	Java Programming ${ }^{9}$ Java Programming
$\begin{aligned} & \text { CS } 153 \\ & \quad \text { or CS } 453 \end{aligned}$	Python Programming 1^{9} Python Programming I
$\begin{aligned} & \text { C S } 154 \\ & \quad \text { or C S } 454 \end{aligned}$	Python Programming II ${ }^{9}$ Python Programming II
CS 172	Computer Science I
C S 271	Object Oriented Programming
Second Language: (not required)	
Electives, to bring the total credits to 123	
Total Credits 123-124	
${ }^{1}$ See the General Education (https://catalogs.nmsu.edu/nmsu/general-education-viewing-wider-world/) section of the catalog for a full list of courses.	
${ }^{2}$ MATH 1511 G Calculus and Analytic Geometry I is required for the degree but students may need to take any prerequisites needed to enter MATH 1511G Calculus and Analytic Geometry I first.	
3 See the Viewing a Wider World (https://catalogs.nmsu.edu/nmsu/ general-education-viewing-wider-world/\#viewingawiderworldtext) section of the catalog for a full list of courses.	
4 STEM Elective: Course at the 300 level or above from E E that is not used to satisfy any other E E program requirement or courses at the 300 level or above from A E, C E, CHME, I E, M E, ASTR, BIOL, CHEM, C S, MATH, PHYS and STAT. Excluded courses include VWW courses and those which are substantially equivalent to an E E course. Click to view a list of excluded STEM Electives (https://ece.nmsu.edu/undergrad-study/BSEE-STEM-electives.html).	
${ }^{5}$ The prerequisite for ENGR 401 Engineering Capstone I for BSEE students is E E 300 Cornerstone Design.	
${ }^{6}$ Students must take E E 333 AC Circuit Analysis and Introduction to Power Systems which is currently offered in the Fall semester and (E E 431 Power Systems II or E E 542 Power Systems II which currently offered in the Spring semester or E E 475 Control System	
Circuit Analysis and Introduction to Power Systems is a prerequisite to E E 431 Power Systems II/E E 542 Power Systems II and E E 407 Introduction to Control Systems is a prerequisite to E E 475 Control Systems Synthesis/E E 551 Control Systems Synthesis .	
${ }^{8}$ This course can satisfy either an E E Concentration Required Course or an E E Concentration Elective, but not both.	
${ }^{9}$ Only one of th satisfy degree course to sati level of the sa	0 -level xor the 400-level course may be taken to uirements. Students may not take the 100-level of a he programming elective requirement and the 400course to satisfy other degree requirements.

A Suggested Plan of Study for Students

This roadmap assumes student placement in MATH 1511G Intermediate Algebra and ENGL 1110G Rhetoric and Composition. The contents and order of this roadmap may vary depending on initial student placement in mathematics and english. It is only a suggested plan of study for students and is not intended as a contract. Course availability may vary from fall to spring semester and may be subject to modification or change.

First Year		
Fall	Credits	
ENGR 190	Introduction to Engineering Mathematics	4
ENGL 1110G	Composition I	4
CHEM 1215G	General Chemistry I Lecture and Laboratory for	4
	STEM Majors	
ENGR 120	DC Circuit Analysis	4
	Credits	$\mathbf{1 6}$

Spring		
MATH 1511G	Calculus and Analytic Geometry I	4
General Education Requirement (Area I, IV, V, VI or VWW) ${ }^{2}$		3
ENGR 130	Digital Logic	4
ENGR 140	Introduction to Programming and Embedded Systems	4
	Credits	15

Second Year		
Fall	Calculus and Analytic Geometry II	4
MATH 1521G	Calculus -Based Physics I	
PHYS 1310G	and Calculus -Based Physics I Lab	4
\& PHYS 1310L	Linear Algebra, Probability and Statistics	4
E E 200	Applications	4
ENGR 230	AC Circuit Analysis	$\mathbf{4}$
	Credits	$\mathbf{1 6}$

Spring		
MATH 3160	Introduction to Ordinary Differential Equations	3
PHYS 1320G	Calculus -Based Physics II	4
\& PHYS 1320L	and Calculus -Based Physics II Lab	
E E 240	Multivariate and Vector Calculus Applications	3
Choose one Programming course from the following:	$3-4$	

$\begin{aligned} & \text { CS } 151 \\ & \quad \text { or C S } 451 \end{aligned}$	C++ Programming or C++ Programming	
$\begin{aligned} & \text { CS } 152 \\ & \quad \text { or CS } 452 \end{aligned}$	Java Programming or Java Programming	
$\begin{aligned} & \text { CS } 153 \\ & \quad \text { or C S } 453 \end{aligned}$	Python Programming I or Python Programming I	
$\begin{aligned} & \text { C S } 154 \\ & \quad \text { or C S } 454 \end{aligned}$	Python Programming II or Python Programming II	
C S 172	Computer Science I	
C S 271	Object Oriented Programming	
General Education Requirement (Area I, IV, V, VI or VWW) ${ }^{2}$		3
	Credits	16-17

Third Year
Fall
EE $300 \quad$ Cornerstone Design 2
E E 320 Signals and Systems I 3
EE 340 Fields and Waves 4

General Education Requirement (Area I, IV, V, VI or VWW) ${ }^{2} 3$

General Education Requirement (Area I, IV, V, VI or VWW) ${ }^{2}$	3
Credits	15
Spring	
E E 317 Semiconductor Devices and Electronics I	4
E E 325 Signals and Systems II	4
E E 362 Introduction to Computer Organization	4
General Education Requirement (Area I, IV, V, VI or VWW) ${ }^{2}$	3
Credits	15
Fourth Year	
Fall	
ENGR 401 Engineering Capstone I	3
E E $333 \quad$AC Circuit Analysis and Introduction to Power Systems	3
Power Elective ${ }^{\text {5,6 }}$	3
STEM Elective ${ }^{4,5}$	3
General Education Requirement (Area I, IV, V, VI or VWW) ${ }^{\text {2,5 }}$	3
Credits	15
Spring	
ENGR 402 Engineering Capstone II	3
Choose one of the following:	3
E E 431 Power Systems II or E E 542 or Power Systems II or E E 475 or Control Systems Synthesis or E E 551 or Control Systems Synthesis	
Power Elective ${ }^{\text {5,6 }}$	3
STEM Elective ${ }^{4,5}$	3
General Education Requirement (Area I, IV, V, VI or VWW) ${ }^{\text {2,5 }}$	3
Credits	15
Total Credits	

1 MATH 1511G Calculus and Analytic Geometry I is required for the degree but students may need to take any prerequisites needed to enter MATH 1511G Calculus and Analytic Geometry I first.
2 See the General Education and Viewing a Wider World (https:// catalogs.nmsu.edu/nmsu/general-education-viewing-wider-world/) section of the catalog for a full list of courses.
3 Students must take both E E 333 AC Circuit Analysis and Introduction to Power Systems which is currently offered in the Fall semester and (E E 431 Power Systems II or E E 542 Power Systems II or E E 475 Control Systems Synthesis or E E 551 Control Systems Synthesis) which are currently offered in the Spring semester.
4 STEM Elective: Course at the 300 level or above from $E E$ that is not used to satisfy any other E E program requirement or courses at the 300 level or above from A E, C E, CHME, I E, M E, ASTR, BIOL, CHEM, C S, MATH, PHYS and STAT. Excluded courses include VWW courses and those which are substantially equivalent to an E E course. Click to view a list of excluded STEM Electives (https://ece.nmsu.edu/undergrad-study/BSEE-STEM-electives.html).
5 Depending on availability of specific courses in the fall or spring semester, students may need to reorganize the ECE Electives, STEM electives, and/or Gen Ed/VWW electives in their final year. Students are strongly advised to consult with their ECE Faculty Mentor for assistance in planning their final year.
${ }^{6}$ One Control \& Power Elective Courses must be from the E E Prefix. See E E Concentration Electives in the Degree Requirements section above.

