ELECTRICAL ENGINEERING (ELECTROMAGNETICS AND PHOTONICS) - BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

Overview

The Electrical Engineering Bachelor of Science program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org, under the commission's General Criteria and Program Criteria for Electrical, Computer, Communications, Telecommunication(s), and Similarly Named Engineering Programs. This particular concentration in the B.S. EE program gives students the opportunity to explore more deeply the area of electromagnetics and photonics.

Electrical Engineering Program Educational Objectives

Below are the program educational objectives (PEOs) that describe the expected accomplishments of graduate during their first few years after graduation.

- Our graduates will obtain relevant, productive employment in the private sector, government and/or pursue an advanced degree.
- 2. Our graduates will be using their engineering foundation to innovate solutions to the problems of the real world.

Transfer Credit Guidelines for Electrical Engineering Degrees

Credit earned at other institutions are generally accepted; however, the following restrictions apply to transfer credits:

- · Engineering credit must be earned at an ABET accredited school.
- · Physics coursework must be calculus based.
- If the NMSU required course includes a lab, the transfer credit must include a lab.
- A grade of C- or better, must have been earned for transfer coursework.
- E E Courses numbered 300/3000 or higher, Cornerstone and Capstone courses may not be transferred for credit.
- Transfer credits for courses above 300/3000 level are not accepted.

Requirements (123-127 credits)

Students must complete all University degree requirements, which include: General Education requirements, Viewing a Wider World requirements, and elective credits to total at least 124 credits with 48 credits in courses numbered 300 or above. Developmental coursework will not count towards the degree requirements and/or elective credits, but may be needed in order to take the necessary English and Mathematics coursework.

Bachelor of Science in Electrical Engineering students must earn a grade of C- or better in all engineering, technology, math and science courses (including associated prerequisite courses) required for the degree. If a grade lower than C- is earned in any of these courses, the student is required to retake the course immediately the next semester it is offered. Students who earn a grade less than a C- the first time will be contacted by the department and/or academic advising center and advised about this policy and resources to help in their academic success. If the student

fails to achieve a C- or better in any of these courses a second time, then the student must submit a written request to the Associate Dean of Academics in the College of Engineering to enroll in the course a third time. The student should explain the circumstances impacting their grade and the actions planned to improve their performance.

Prefix	Title	Credits
General Education		
Area I: Communication	าร	
English Composition -	Level 1	4
ENGL 1110G	Composition I	
English Composition -	Level 2 ¹	3
Oral Communication 1		3
Area II: Mathematics		4
MATH 1511G	Calculus and Analytic Geometry I ²	
Area III: Laboratory Sc	iences	8
CHEM 1215G	General Chemistry I Lecture and Laboratory for STEM Majors	
PHYS 1310G	Calculus -Based Physics I	
& PHYS 1310L	and Calculus -Based Physics I Lab	
Area IV: Social/Behavi	ioral Sciences '	3
Area V: Humanities ¹	1	3
Area VI: Creative and I		3
General Education Ele	ctive	4
MATH 1521G	Calculus and Analytic Geometry II	
Departmental/Colleg	e Requirements	
Program Specific Requ		
Mathematics and Nati		18
MATH 3160	Introduction to Ordinary Differential Equations	
PHYS 1320G & PHYS 1320L	Calculus -Based Physics II and Calculus -Based Physics II Lab	
ENGR 190	Introduction to Engineering Mathematics	
E E 200	Linear Algebra, Probability and Statistics Applications	
E E 240	Multivariate and Vector Calculus Applications	
STEM		6
Choose two STEM	1 Electives ³	
Electrical and Comput	er Engineering	43
ENGR 120	DC Circuit Analysis	
ENGR 130	Digital Logic	
ENGR 140	Introduction to Programming and Embedded Systems	
ENGR 230	AC Circuit Analysis	
E E 300	Cornerstone Design	
E E 317	Semiconductor Devices and Electronics I	
E E 320	Signals and Systems I	
E E 325	Signals and Systems II	
E E 340	Fields and Waves	
E E 362	Introduction to Computer Organization	
ENGR 401	Engineering Capstone I ⁴	
ENGR 402	Engineering Capstone II	
E E Concentration Req	uired Courses	6-7
E E 454	Antennas and Radiation ⁵	
or E E 541	Antennas and Radiation	
or E E 452	Introduction to Radar	
or E E 548	Introduction to Radar	
E E 473	Introduction to Optics 5	

must be an E E course):	6
E E 449	Smart Antennas
or E E 549	Smart Antennas
E E 452	Introduction to Padar 7

E E Concentration Electives: Choose two courses from the following (one

or E E 549	Smart Antennas
E E 452	Introduction to Radar ⁷
or E E 548	Introduction to Radar
E E 453	Microwave Engineering
or E E 521	Microwave Engineering
E E 454	Antennas and Radiation ⁷
or E E 541	Antennas and Radiation
E E 478	Fundamentals of Photonics
or E E 528	Fundamentals of Photonics
CHME 467	Nanoscience and Nanotechnology
M E 328	Engineering Analysis II
ASTR 402	Astronomical Observations and Techniques
MATH 4210	Complex Variables
MATH 4220	Fourier Series and Boundary Value Problems
MATH 4230	Applied Linear Algebra
PHYS 315	Modern Physics

Non-Departmental Requirements (in addition to Gen.Ed)

Modern Experimental Optics

PHYS 471

Viewing a Wider World Electives 8

Programming Elective			
Select one course from the following:			
CSCI 1240	C++ Programming I ⁹		
or CSCI 4510	C++ Programming		
CSCI 1210	Computer Programming Fundamentals 9		
or CSCI 4505	Java Programming		
CSCI 1220	Computer Programming Fundamentals: Python 9		
or CSCI 4520	Python Programming I		
CSCI 1225	Python Programming II ⁹		
or CSCI 4525	Python Programming II		
CSCI 1720	Computer Science I		
CSCI 2210	Object-Oriented Programming		
Second Language: (not required)			

Electives, to bring the total credits to 123 **Total Credits** 123-127

0

See the General Education (https://catalogs.nmsu.edu/nmsu/generaleducation-viewing-wider-world/) section of the catalog for a full list of

MATH 1511G Calculus and Analytic Geometry I is required for the degree but students may need to take any prerequisites needed to enter MATH 1511G Calculus and Analytic Geometry I first.

STEM Elective: Course at the 300 level or above from E E that is not used to satisfy any other E E program requirement or courses at the 300 level or above from A E, C E, CHME, I E, M E, ASTR, BIOL, CHEM, CSCI, MATH, PHYS and STAT. Excluded courses include VWW courses and those which are substantially equivalent to an E E course. Click to view a list of excluded STEM Electives (https://ece.nmsu.edu/ undergrad-study/BSEE-STEM-electives.html).

The prerequisite for ENGR 401 Engineering Capstone I for BSEE students is E E 300 Cornerstone Design.

Students must take (E E 454 Antennas and Radiation or E E 541 Antennas and Radiation or E E 452 Introduction to Radar or E E 548 Introduction to Radar) which are currently offered in the Fall semester and E E 473 Introduction to Optics which is currently offered in the Spring semester

Some of these elective courses may have additional prerequisites.

This course can satisfy either an E E Concentration Required Course or an E E Concentration Elective, but not both.

See the Viewing a Wider World (https://catalogs.nmsu.edu/nmsu/ general-education-viewing-wider-world/#viewingawiderworldtext) section of the catalog for a full list of courses.

Only one of the 100/1000-level or the 400/4000-level course may be taken to satisfy degree requirements. Students may not take the 100/1000-level of a course to satisfy the programming elective requirement and the 400/4000-level of the same course to satisfy other degree requirements.