ELECTRICAL ENGINEERING (COMMUNICATIONS AND SIGNAL PROCESSING) -BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

Overview

The Bachelor of Science in Electrical Engineering program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org, under the commission's General Criteria and Program Criteria for Electrical, Computer, Communications, Telecommunication(s), and Similarly Named Engineering Programs. This particular concentration in the Bachelor of Science in Electrical Engineering program gives students the opportunity to explore more deeply the area of communications and signal processing.

Electrical Engineering Program Educational Objectives

Below are the program educational objectives (PEOs) that describe the expected accomplishments of graduate during their first few years after graduation.

- Our graduates will obtain relevant, productive employment in the private sector, government and/or pursue an advanced degree.
- Our graduates will be using their engineering foundation to innovate solutions to the problems of the real world.

Transfer Credit Guidelines for Electrical Engineering Degrees

Credit earned at other institutions are generally accepted; however, the following restrictions apply to transfer credits:

- Engineering credit must be earned at an ABET accredited school.
- · Physics coursework must be calculus based.
- If the NMSU required course includes a lab, the transfer credit must include a lab.
- A grade of C- or better, must have been earned for transfer coursework.
- E E Courses numbered 300/3000 or higher, Cornerstone and Capstone courses may not be transferred for credit.
- Transfer credits for courses above 300/3000 level are not accepted.

Requirements (123-125 credits)

Students must complete all University degree requirements, which include: General Education requirements, Viewing a Wider World requirements, and elective credits to total at least 123 credits with 48 credits in courses numbered 300 or above. Developmental coursework will not count towards the degree requirements and/or elective credits, but may be needed in order to take the necessary English and Mathematics coursework.

Bachelor of Science in Electrical Engineering students must earn a grade of C- or better in all engineering, technology, math and science courses (including associated prerequisite courses) required for the degree and also courses taken to satisfy the general education requirements for Area I-Communications, Area II-Mathematics, and Area III-Laboratory Sciences. If a grade lower than C- is earned in any of these courses, the student is required to retake the course immediately the next semester it is offered.

Students who earn a grade less than a C- the first time will be contacted by the department and/or academic advising center and advised about this policy and resources to help in their academic success. If the student fails to achieve a C- or better in any of these courses a second time, then the student must submit a written request to the Associate Dean of Academics in the College of Engineering to enroll in the course a third time. The student should explain the circumstances impacting their grade and the actions planned to improve their performance.

Prefix	Title	Credits
General Education		
Area I: Communications	3	
English Composition - L	evel 1	
ENGL 1110G	Composition I	4
or ENGL 1110H	Composition I Honors	
or ENGL 1110M	Composition I	
English Composition - L	evel 2 ¹	3
Oral Communications 1		3
Area II: Mathematics		
MATH 1511G	Calculus and Analytic Geometry I ²	4
or MATH 1511H	Calculus and Analytic Geometry I Honors	
Area III: Laboratory Sciences		
CHEM 1215G	General Chemistry I Lecture and Laboratory for STEM Majors	
PHYS 1310G & PHYS 1310L	Calculus -Based Physics I and Calculus -Based Physics I Lab	
Area IV: Social/Behavio	ral Sciences ¹	3
Area V: Humanities ¹		3
Area VI: Creative and Fi	ne Arts ¹	3
General Education Elec	tive	4
MATH 1521G	Calculus and Analytic Geometry II	
or MATH 1521H	Calculus and Analytic Geometry II Honors	
Departmental/College	Requirements	
Program Specific Requi	rements	
Mathematics and Natur	ral Science	18
MATH 3160	Introduction to Ordinary Differential Equations	
PHYS 1320G	Calculus -Based Physics II	
& PHYS 1320L	and Calculus -Based Physics II Lab	
ENGR 190	Introduction to Engineering Mathematics	
E E 200	Linear Algebra, Probability and Statistics Applications	
E E 240	Multivariate and Vector Calculus Applications	
STEM		12
Choose four STEM	Electives ³	
Electrical and Compute	r Engineering	43
ENGR 120	DC Circuit Analysis	
ENGR 130	Digital Logic	
ENGR 140	Introduction to Programming and Embedded Systems	
ENGR 230	AC Circuit Analysis	
E E 300	Cornerstone Design	
E E 317	Semiconductor Devices and Electronics I	
E E 320	Signals and Systems I	
E E 325	Signals and Systems II	
E E 340	Fields and Waves	
E E 362	Introduction to Computer Organization	
ENGR 401	Engineering Capstone I 4	
ENGR 402	Engineering Capstone II	

Flec	tives, to bring the	total credits to 123	
	ond Language: (no		
	CSCI 2210	Object-Oriented Programming	
	CSCI 1720	Computer Science I	
_	or CSCI 4525	Python Programming II	
C	CSCI 1225	Python Programming II	
	or CSCI 4520	Python Programming I	
	0001 /		
C	CSCI 1220	Computer Programming Fundamentals: Python	
	or CSCI 4505	Java Programming	
C	CSCI 1210	Computer Programming Fundamentals ⁸	
	or CSCI 4510	C++ Programming	
C	CSCI 1240	C++ Programming I ⁸	
Sele	ect one course from	n the following:	3-4
Viev	ving a Wider World	d Electives	e
Prog	gramming Elective		
Non	-Departmental Re	quirements (in addition to Gen.Ed)	
S	STAT 4210	Probability: Theory and Applications	
N	MATH 4360	Introduction to Real Analysis I	
N	MATH 4350	Advanced Linear Algebra	
٨	MATH 4230	Applied Linear Algebra	
٨	MATH 4220	Fourier Series and Boundary Value Problems	
N	MATH 4210	Complex Variables	
C	CSCI 4305	Bioinformatics	
C	CSCI 4205	Computer Security	
C	CSCI 4255	Digital Game Design	
C	CSCI 4410	Computer Graphics I	
C	CSCI 4405	Artificial Intelligence I	
	CSCI 4520	Python Programming I ^{7,8}	
	CSCI 3720	Data Structures and Algorithms	
	CSCI 3790	Algorithm Design & Implementation	
	or E E 581	Digital Communication Systems I	
Е	E E 497	Digital Communication Systems I	
Е	E 490	Selected Topics (Wireless Communications)	
	or E E 565	Machine Learning I	
E	E E 465	Machine Learning I	
_	E E 460	Space System Mission Design and Analysis	
	or E E 573	Signal Compression	
E	E E 448	Signal Compression	
	or E E 597	Neural Signal Processing	
Е	E 447	Neural Signal Processing	
	or E E 596	Digital Image Processing	
Е	E E 446	Digital Image Processing	
	or E E 588	Advanced Image Processing	
Е	E 444	Advanced Image Processing	
	or E E 576	Geometric Algebra	
	E E 403	Geometric Algebra	
	t be an E E course)	tives: Choose two courses from the following (one . 6	6-7
	E E 496	Introduction to Communication Systems 5	
	E 495	Introduction to Digital Signal Processing ⁵	
		uired Courses	(

See the General Education (https://catalogs.nmsu.edu/nmsu/general-education-viewing-wider-world/) section of the catalog for a full list of courses.

- MATH 1511G Calculus and Analytic Geometry I is required for the degree but students may need to take any prerequisites needed to enter MATH 1511G Calculus and Analytic Geometry I first.
- 3 STEM Elective: Course at the 300/3000 level or above from E E that is not used to satisfy any other E E program requirement or courses at the 300/3000 level or above from A E, C E, CHME, I E, M E, ASTR, BIOL, CHEM, CSCI, MATH, PHYS and STAT. Excluded courses include VWW courses and those which are substantially equivalent to an E E course. Click to view a list of excluded STEM Electives (https://ece.nmsu.edu/undergrad-study/BSEE-STEM-electives.html).
- The prerequisite for ENGR 401 Engineering Capstone I for BSEE students is E E 300 Cornerstone Design.
- Students must take both E E 495 Introduction to Digital Signal Processing and E E 496 Introduction to Communication Systems, both of which are currently offered in the Fall semester.
- ⁶ Some of these elective courses may have additional prerequisites.
- Students may count CSCI 4520 Python Programming I toward their Programming Elective or toward their E E Concentration Electives, but may not use the course to count toward both.
- Only one of the 100/1000-level or the 400/4000-level course may be taken to satisfy degree requirements. Students may not take the 100/1000-level of a course to satisfy the programming elective requirement and the 400/4000-level of the same course to satisfy other degree requirements.

A Suggested Plan of Study for Students

This roadmap assumes student placement in MATH 1511G Calculus and Analytic Geometry I and ENGL 1110G . The contents and order of this roadmap may vary depending on initial student placement in mathematics and English. It is only a suggested plan of study for students and is not intended as a contract. Course availability may vary from fall to spring semester and may be subject to modification or change.

Fall		Credits
ENGR 190	Introduction to Engineering Mathematics	4
ENGL 1110G	Composition I	4
CHEM 1215G	General Chemistry I Lecture and Laboratory for STEM Majors	4
ENGR 120	DC Circuit Analysis	4
	Credits	16
Spring		
MATH 1511G	Calculus and Analytic Geometry I ¹	4
General Education Co	ourse ²	3
ENGR 130	Digital Logic	4
ENGR 140	Introduction to Programming and Embedded Systems	4
	Credits	15
Second Year		
Fall		
MATH 1521G	Calculus and Analytic Geometry II	4
PHYS 1310G & PHYS 1310L	Calculus -Based Physics I and Calculus -Based Physics I Lab	4
E E 200	Linear Algebra, Probability and Statistics Applications	4
ENGR 230	AC Circuit Analysis	4
	Credits	16

Spring		
MATH 3160	Introduction to Ordinary Differential Equations	3
PHYS 1320G	Calculus -Based Physics II	4
& PHYS 1320L	and Calculus -Based Physics II Lab	
E E 240	Multivariate and Vector Calculus Applications	3
	ming course from the following:	3-4
CSCI 1240 or CSCI 4510	C++ Programming I or C++ Programming	
CSCI 1210 or CSCI 4505	Computer Programming Fundamentals or Java Programming	
CSCI 1220 or CSCI 4520	Computer Programming Fundamentals: Python	
	or Python Programming I	
CSCI 1225 or CSCI 4525	Python Programming II or Python Programming II	
CSCI 1720	Computer Science I	
CSCI 2210	Object-Oriented Programming	
General Education Co	urse ²	3
	Credits	16-17
Third Year		
Fall		
E E 300	Cornerstone Design	2
E E 320	Signals and Systems I	3
E E 340	Fields and Waves	4
General Education Co		3
General Education Co	urse ²	3
Spring	Credits	15
Spring EE317	Semiconductor Devices and Electronics I	4
E E 325	Signals and Systems II	4
E E 362	Introduction to Computer Organization	4
General Education Co		3
- Central Education 60	Credits	15
Fourth Year	oreans	10
Fall		
ENGR 401	Engineering Capstone I	3
E E 495	Introduction to Digital Signal Processing ³	3
E E 496	Introduction to Communication Systems ³	3
STEM Elective 4,5	,	3
STEM Elective 4,5		3
	Credits	15
Spring		
ENGR 402	Engineering Capstone II	3
	gnal Processing Elective ^{5,6}	3-4
	gnal Processing Elective ^{5,6}	3
STEM Elective 4,5		3
STEM Elective 4,5		3
STEM Elective 4,5	Credits	3 15-16
STEM Elective 4,5	Credits Total Credits	

O--------

MATH 1511G Calculus and Analytic Geometry I is required for the degree but students may need to take any prerequisites needed to enter MATH 1511G Calculus and Analytic Geometry I first.

See the General Education (https://catalogs.nmsu.edu/nmsu/general-education-viewing-wider-world/) section of the catalog for a full list of courses.

- Students must take both E E 495 Introduction to Digital Signal Processing and E E 496 Introduction to Communication Systems, both of which are currently offered in the Fall semester.
- STEM Elective: Course at the 300/3000 level or above from E E that is not used to satisfy any other E E program requirement or courses at the 300/3000 level or above from A E, C E, CHME, I E, M E, ASTR, BIOL, CHEM, CSCI, MATH, PHYS and STAT. Excluded courses include VWW courses and those which are substantially equivalent to an E E course. Click to view a list of excluded STEM Electives (https://ece.nmsu.edu/undergrad-study/BSEE-STEM-electives.html).
- Depending on availability of specific courses in the fall or spring semester, students may need to reorganize the ECE Electives, STEM electives, and/or Gen Ed electives in their final year. Students are strongly advised to consult with their ECE Faculty Mentor for assistance in planning their final year.
- At least one Communications & Signal Processing Elective Course must be from the E E Prefix. See E E Concentration Electives in the Degree Requirements section above.