COMPUTER SCIENCE

Computer Science is the area of study that encompasses all of the theory and practice of computing. The mission of the Department of Computer Science at New Mexico State University is to provide formal education in the core disciplines of computer science, as well as to prepare our graduates for research, development and academic careers. For more information on the Department of Computer Science, please visit the website www.cs.nmsu.edu (https://www.cs.nmsu.edu).

Undergraduate Program Information

The undergraduate computer science programs prepare students for graduate study in computer science and for employment in positions involving the design, construction and application of computer systems. Undergraduate degree programs include a Bachelor of Science (ABET accredited), Bachelor of Arts, and four minor degree tracks. The B.S. degree is the traditional computer science degree program, while the B.A. degree offers a more open, flexible degree plan that is easier to combine with studies in other disciplines. The minors offer specialized tracks in algorithm theory, bioinformatics, computer systems and software development. With technology underpinning almost every area of human endeavor today, students across NMSU should consider pursuing a minor or at least taking some computer science courses. Computer science majors should review their programs of study in consultation with their advisors each semester, preferably using the most recent Undergraduate Catalog.

Graduate Program Information

The department offers both Master of Science and Doctor of Philosophy graduate degrees in computer science, along with a Master of Science in Bioinformatics. We also encourage students in other disciplines to do a graduate minor in computer science. Graduate students typically work closely with a faculty member in a specific area of research. The department offers expertise in several research areas, such as: artificial intelligence and knowledge representation; computer and wireless networks; data mining and machine learning; game design and human-computer interaction; bioinformatics; high performance computing; software engineering and programming languages; theory of computing; and assistive technologies.

A number of laboratories have been established to coordinate research activities, including

- the Knowledge representation, Logic and Advanced Programming (KLP) lab,
- the Play and Interactive Experiences for Learning (PiXL) lab,
- the Knowledge Discovery and Data Mining (KDD) lab,
- the Data Storage Lab (DSL),
- the Programming Languages, Environments, and Automated Software Engineering (PLEASE) lab,
- the Bioinformatics Research lab; and
- the Network and Systems Optimization Lab (NSOL).

Department members are also directing the iCREDITS interdisciplinary Center of Research Excellence in Design of Intelligent Technologies for Smartgrids, offering educational and research opportunities in smartgrids.

Entrance Requirements for Graduate Study in Computer Science

The Graduate Record Exam (GRE) General Test is not required for admission; however, high GRE scores will strengthen a candidate's application and are highly regarded in the awarding of Graduate Assistantships. To be admitted without undergraduate deficiencies, an entering student must have completed undergraduate preparation substantially equivalent to that required for the Bachelor of Science degree in Computer Science at New Mexico State University; in particular, this includes courses equivalent to

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C S 172</td>
<td>Computer Science I</td>
<td>4</td>
</tr>
<tr>
<td>C S 271</td>
<td>Object Oriented Programming</td>
<td>4</td>
</tr>
<tr>
<td>C S 272</td>
<td>Introduction to Data Structures</td>
<td>4</td>
</tr>
<tr>
<td>C S 273</td>
<td>Machine Programming and Organization</td>
<td>4</td>
</tr>
<tr>
<td>C S 278</td>
<td>Discrete Mathematics for Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>C S 370</td>
<td>Compilers and Automata Theory</td>
<td>4</td>
</tr>
<tr>
<td>C S 371</td>
<td>Software Development</td>
<td>4</td>
</tr>
<tr>
<td>C S 372</td>
<td>Data Structures and Algorithms</td>
<td>4</td>
</tr>
<tr>
<td>C S 471</td>
<td>Programming Language Structure I</td>
<td>3</td>
</tr>
<tr>
<td>C S 473</td>
<td>Architectural Concepts I</td>
<td>3</td>
</tr>
<tr>
<td>C S 474</td>
<td>Operating Systems I</td>
<td>3</td>
</tr>
</tbody>
</table>

Deficiencies should be satisfied as early in the student graduate program as possible, through the regular undergraduate courses, the C S 460 - C S 469 transition courses, or through tests administered by faculty members in the relevant areas. Students should consult with their Graduate Advisor to address issues related to deficiencies. Deficiencies are also assigned to applicants whose transcripts denote low grades in selected areas. Admission is often denied to candidates with little background in Computer Science. Instructions for prospective applicants can be found at http://www.cs.nmsu.edu.

Entrance Requirements for Graduate Study in Bioinformatics

The Graduate Record Exam (GRE) General Test is not required for admission; however, high GRE scores will strengthen a candidate's application and are highly regarded in the awarding of Graduate Assistantships. Students wishing to enroll in the Master program in Bioinformatics must meet the following criteria:

1. Hold a BS degree, from an accredited institution of higher learning, in either a computational field (e.g., Computer Science) or in life sciences (preferably Biology, Biochemistry, or Environmental Sciences)
2. Hold a minimum grade point average of 3.2

Applicants will be expected to provide a Career statement, motivating the interest in bioinformatics and a minimum of three letters of reference.

Graduate Assistantships

Graduate assistantships (in the form of Teaching and Research assistantships) are expected to be available during the academic year. Inquiries should be addressed to the departmental Graduate Committee. Research assistantships are available at the discretion of individual research project leaders in the Department or elsewhere on campus. Submitting detailed vitae, letters of reference, and GRE test scores are encouraged when applying for any assistantship.
Degrees for the Department

Computer Science - Bachelor of Arts (http://catalogs.nmsu.edu/nmsu/arts-sciences/computer-science/computer-science-bachelor-arts)

Computer Science - Bachelor of Science (http://catalogs.nmsu.edu/nmsu/arts-sciences/computer-science/computer-science-bachelor-science)

Computer Science - Bachelor of Science/Master of Science (http://catalogs.nmsu.edu/nmsu/arts-sciences/computer-science/computer-science-bachelor-science-master-science)

Bioinformatics - Master of Science (http://catalogs.nmsu.edu/nmsu/arts-sciences/computer-science/bioinformatics-master-science)

Computer Science - Master of Science (http://catalogs.nmsu.edu/nmsu/arts-sciences/computer-science/computer-science-master-science-master-science)

Computer Science - Doctor of Philosophy (http://catalogs.nmsu.edu/nmsu/arts-sciences/computer-science/computer-science-doctor-philosophy)

Minors for the Department

A student cannot earn more than one of the undergraduate minors unless they pass at least 6 credits in the second minor beyond the requirements of the first minor. The maximum number of undergraduate minors that a student may earn is two. Most courses for the minors listed below have prerequisites. Please check the undergraduate catalog for individual course prerequisites. Students interested in pursuing a computer science minor are encouraged to pick up more information at the departmental office.

Algorithm Theory - Undergraduate Minor (http://catalogs.nmsu.edu/nmsu/arts-sciences/computer-science/algorithm-theory-undergraduate-minor)

Bioinformatics - Undergraduate Minor (http://catalogs.nmsu.edu/nmsu/arts-sciences/computer-science/bioinformatics-undergraduate-minor)

Computer Systems - Undergraduate Minor (http://catalogs.nmsu.edu/nmsu/arts-sciences/computer-science/computer-systems-undergraduate-minor)

Software Development - Undergraduate Minor (http://catalogs.nmsu.edu/nmsu/arts-sciences/computer-science/software-development-undergraduate-minor)

Computer Science - Graduate Minor (http://catalogs.nmsu.edu/nmsu/arts-sciences/computer-science/computer-science-graduate-minor)

Faculty

Professor Son Tran, Department Head

Professors Cook, Leung, Pontelli, Song, Tran; Associate Professors Cao, Misra, Pivkina; Assistant Professors Nagarkar, Toups, Vishnawathan, Zheng; College Professors Cooper, Steiner

J. Cook, Ph.D. (Colorado) – software engineering, component-based systems; H. Cao, Ph.D. (Hong-Kong) – data mining, databases, data integration; H. Leung, Ph.D. (Penn State) – automata theory; S. Misra, Ph.D. (Arizona State) – communication networks, social networks, high performance computing, security and privacy; I. Pivkina, Ph.D. (Kentucky) – artificial intelligence, computer science education, data mining; E. Pontelli, Ph.D. (New Mexico State) – parallel processing, logic programming, knowledge representation, bioinformatics, assistive technologies; P. Nagarkar, Ph.D. (Arizona State) – query optimization, indexing, data analytics, big data; M. Song, Ph.D. (Washington) – statistical computing, systems biology, bioinformatics, computer vision; Z. Toups, Ph.D. (Texas A&M) – digital games, human-computer interaction, mixed reality; S. Tran, Department Head, Ph.D. (Texas-El Paso) – artificial intelligence, knowledge representation, planning, logic programming, non-monotonic reasoning; R. Vishnawathan, Ph.D. (North Texas) – cryptography, theoretical and applied, security, privacy; M. Zheng, Ph.D. (Ohio State) – computer systems, storage and file systems, parallel and distributed systems

Support Faculty:

S. Cooper, Ph.D. (New Mexico State) – computer networks; E. Steiner, Ph.D. (Oklahoma State) – computer science education

Computer Science Courses

C S 110. Computer Literacy

3 Credits

This course provides a broad introduction to computing, including computer and information technology concepts; economic and social implications of technology; database management, spreadsheet, word processing, and presentation applications.

C S 111. Computer Science Principles

4 Credits (3+2P)

This course provides a broad and exciting introduction to the field of computer science and the impact that computation has today on every aspect of life. It focuses on exploring computing as a creative activity and investigates the key foundations of computing: abstraction, data, algorithms, and programming. It looks into how connectivity and the Internet have revolutionized computing and demonstrates the global impact that computing has achieved, and it reveals how a new student in computer science might become part of the computing future.

Prerequisite(s): MATH 120 or higher.

C S 117. Introduction to Computer Animation

3 Credits

Introductory course for learning to program with computer animation as well as learning basic concepts in computer science. Students create interactive animation projects such as computer games and learn to use software packages for creating animations in small virtual worlds using 3D models. Recommended for students considering a minor/major in computer science or simply interested in beginning computer animation or programming.

C S 150. C Programming

3 Credits (2+2P)

Programming in the C language. May be repeated up to 3 credits.

Prerequisite(s): MATH 120 or higher.

C S 151. C++ Programming

3 Credits (2+2P)

Introduction to object-oriented programming in the C++ language. May be repeated up to 3 credits.

Prerequisite(s): MATH 120 or higher.

C S 152. Java Programming

3 Credits (2+2P)

Programming in the Java language. May be repeated up to 3 credits.

Prerequisite(s): MATH 120 or higher.

Prerequisite(s): MATH 120 or higher.
C S 153. Python Programming I
3 Credits
This course is an introduction to programming in the Python language, covering fundamental scripts, data types and variables, functions, and simple object creation and usage. The focus will be on preparing students to use Python in their own areas. No prior programming experience is required.
Prerequisite(s): MATH 120 or higher.

C S 154. Python Programming II
3 Credits
This course covers advanced Python programming, including classes, objects, and inheritance, embedded programming in domain applications, database interaction, and advanced data and text processing. The focus will be on preparing students to use Python in their own areas.
Prerequisite(s): C S 153 or C S 453.

C S 155. Internet Programming I
3 Credits
This course is an introduction to programming for the Web in PHP and Javascript, covering fundamental web scripting ideas, CSS, data types and variables, functions, simple object creation and usage. Javascript usage will focus on dynamic page content. No prior programming experience is required, though a basic understanding of HTML will be assumed.
Prerequisite(s): MATH 120 and a basic understanding of HTML.

C S 156. Internet Programming II
3 Credits
This course covers advanced web scripting, including Javascript with AJAX, PHP integration with databases, object oriented features of PHP and Javascript, advanced CSS usage, and using web application frameworks.
Prerequisite(s): C S 155 or C S 455.

C S 157. Topics in Software Programming and Applications
3 Credits (2+2P)
Current topics in computer programming and software applications. Topic announced in the Schedule of Classes. May be repeated if subtitle is different.

C S 158. R Programming I
3 Credits
This course is an introduction to data processing in the R language, covering fundamental script configuration, data types and data collections, R control structures, and basic creation of graphs and data visualizations. This course will not focus on the statistical capabilities of R, though some basic statistical computations will be used.
Prerequisite(s): MATH 121G.

C S 159. R Programming II
3 Credits
This course covers advanced R programming, including advanced data collection processing, advanced data visualizations, object oriented features of R, and file processing. It is recommended that students have one statistics course before taking this course.
Prerequisite(s): C S 158 or C S 458.

C S 171G. Introduction to Computer Science
4 Credits (3+2P)
Computers are now used widely in all area of modern life. This course provides understanding of the theoretical and practical foundations for how computers work, and provides practical application and programming experience in using computers to solve problems efficiently and effectively. The course covers broad aspects of the hardware, software, and mathematical basis of computers. Weekly labs stress using computers to investigate and report on data-intensive scientific problems. Practical experience in major software applications includes an introduction to programming, word processing, spreadsheets, databases, presentations, and Internet applications.
Prerequisite(s): MATH 210G or MATH 120 or higher.

C S 172. Computer Science I
4 Credits (3+2P)
Computational problem solving; problem analysis; implementation of algorithms. Recursive structures and algorithms. Crosslisted with: C S 460.
Prerequisite(s): MATH 121G or higher; C S 111 or successful placement.

C S 209. Special Topics.
1-3 Credits
May be repeated for a maximum of 12 credits.

C S 271. Object Oriented Programming
4 Credits (3+2P)
Introduction to problem analysis and problem solving in the object-oriented paradigm. Practical introduction to implementing solutions in the C++ language. Pointers and dynamic memory allocation. Hands-on experience with useful development tools. May be repeated up to 4 credits.
Prerequisite(s): C- or better in C S 172 or E E 112.

C S 272. Introduction to Data Structures
4 Credits (3+2P)
Design, implementation, use of fundamental abstract data types and their algorithms: lists, stacks, queues, deques, trees; imperative and declarative programming. Internal sorting; time and space efficiency of algorithms.
Prerequisite(s): At least a C- in C S 172, or placement.

C S 273. Machine Programming and Organization
4 Credits (3+2P)
Computer structure, instruction execution, addressing techniques; programming in machine and assembly languages.
Prerequisite(s): At least a C- in C S 172 or E E 161.

C S 278. Discrete Mathematics for Computer Science
4 Credits (3+2P)
Discrete mathematics required for Computer Science, including the basics of logic, number theory, methods of proof, sequences, mathematical induction, set theory, counting, and functions. Crosslisted with: MATH 278.
Prerequisite(s): At least C- in C S 172.

C S 343. Algorithm Design & Implementation
3 Credits
Prerequisite(s): At least a C- in C S 272, or consent of instructor.
Computer Science

C S 370. Compilers and Automata Theory
4 Credits (3+2P)
Methods, principles, and tools for programming language processor design; basics of formal language theory (finite automata, regular expressions, context-free grammars); development of compiler components.
Prerequisite(s): At least a C- in C S 271, C S 272, C S 273, and C S 278.

C S 371. Software Development
4 Credits (3+2P)
Software specification, design, testing, maintenance, documentation; informal proof methods; team implementation of a large project.
Prerequisite(s): At least a C- in C S 271 and C S 272.

C S 372. Data Structures and Algorithms
4 Credits (3+2P)
Prerequisite(s): At least a C- in C S 272 and C S 278.

C S 375. Introduction to Intelligent Agents Using Science Fiction
3 Credits
This course uses science-fiction movies to introduce fundamental principles and techniques in agents and multi-agent systems. It covers game theory, decision theory, machine learning, and distributed systems.

C S 409. Independent Study
1-6 Credits (1-6)
Faculty supervised investigation, to culminate in a written report. May be repeated up to 6 credits.
Prerequisite(s): Written agreement with faculty supervisor.

C S 419. Computing Ethics and Social Implications of Computing
1 Credit
Corequisite(s): C S 448 or C S 449.

C S 448. Senior Project
4 Credits
Capstone course in which C S majors work in teams and apply computer science skills to complete a large project. Consent of Instructor required. Restricted to: C S majors.
Prerequisite(s): Senior standing.
Corequisite(s): C S 419.

C S 449. Senior Thesis
4 Credits
Capstone course in which C S majors apply computer science skills to complete a research project, culminating in a written thesis report. Consent of Instructor required. Restricted to: C S majors.
Prerequisite(s): Consent of thesis adviser.
Corequisite(s): C S 419.

C S 450. C Programming
3 Credits
Programming in the C language. More advanced than C S 150. Recommended for nonmajors only. May be repeated up to 3 credits.
Prerequisite(s): Graduate standing.

C S 451. C++ Programming
3 Credits
Programming in the C language. More advanced than C S 151. Recommended for nonmajors only. May be repeated up to 3 credits.
Prerequisite(s): Graduate standing.

C S 452. Java Programming
3 Credits (2+2P)
Programming in the Java language. More advanced than C S 152. Recommended for nonmajors only. May be repeated up to 3 credits.
Prerequisite(s): Graduate standing.

C S 453. Python Programming I
3 Credits
This course is an introduction to programming in the Python language, covering fundamental scripts, data types and variables, functions, and simple object creation and usage. The focus will be on preparing students to use Python in their own areas. For graduate students only. Has more advanced work than C S 154, and does not count towards CS major requirements. May be repeated up to 3 credits. Graduate standing. Not for CS students.
Prerequisite(s): C S 153 or C S 453.

C S 454. Python Programming II
3 Credits
This course covers advanced Python programming, including classes, objects, and inheritance, embedded programming in domain applications, database interaction, and advanced data and text processing. The focus will be on preparing students to use Python in their own areas. For graduate students only. Has more advanced work than C S 154, and does not count towards CS major requirements. May be repeated up to 3 credits. Graduate standing. Not for CS students. Restricted to: exclude CS majors.
Prerequisite(s): MATH 120 and a basic understanding of HTML.

C S 455. Internet Programming I
3 Credits
This course is an introduction to programming for the Web in PHP and Javascript, covering fundamental web scripting ideas, CSS, data types and variables, functions, simple object creation and usage. Javascript usage will focus on dynamic page content. No prior programming experience is required, though a basic understanding of HTML will be assumed. For graduate students only. Has more advanced work than C S 155. Does not count towards CS major requirements. May be repeated up to 3 credits. Graduate standing. Not for CS students. Restricted to: exclude CS majors.
Prerequisite(s): C S 155 or C S 455.

C S 456. Internet Programming II
3 Credits
This course covers advanced web scripting, including Javascript with AJAX, PHP integration with databases, object oriented features of PHP and Javascript, advanced CSS usage, and using web application frameworks. For graduate students only. Has more advanced work than C S 156. Does not count towards CS major requirements. May be repeated up to 3 credits. Graduate standing. Not for CS students. Restricted to: exclude CS majors.
Prerequisite(s): C S 155 or C S 456.

C S 457. Topics in Software Programming and Applications
3 Credits (2+2P)
Current topics in computer programming and software applications. Topic announced in the Schedule of Classes. More advanced than C S 157. Recommended for non-majors only. May be repeated if subtitle is different.
Prerequisite(s): Graduate standing.
C S 458. R Programming I
3 Credits
This course is an introduction to data processing in the R language, covering fundamental script configuration, data types and data collections, R control structures, and basic creation of graphs and data visualizations. This course will not focus on the statistical capabilities of R, though some basic statistical computations will be used. For graduate students only. Has more advanced work than C S 158. Does not count towards CS major requirements. May be repeated up to 3 credits.
Prerequisite(s): Good understanding of college algebra or higher.

C S 459. R Programming II
3 Credits
This course covers advanced R programming, including advanced data collection processing, advanced data visualizations, object oriented features of R, and file processing. It is recommended that students have one statistics course before taking this course. For graduate students only. Has more advanced work than C S 159, and does not count towards CS major requirements. May be repeated up to 3 credits. Crosslisted with: C S 469. Graduate standing. Restricted to: exclude computer science majors.
Prerequisite(s): C S 158 or C S 458.

C S 460. Computer Science I Transition
3 Credits
Computational problem solving; problem analysis; implementation of algorithms. Recursive structures and algorithms. For C S graduate students only; cannot be used to meet a C S student’s program of study. Taught with C S 172. Consent of Instructor required. Crosslisted with: C S 172.

C S 462. Object Oriented Programming Transition
3 Credits
Introduction to problem analysis and problem solving in the object-oriented paradigm. Practical introduction to implementing solutions in the C++ language. Hands-on experience with useful development tools. Cannot be used in a C S student’s program of study. Consent of Instructor required.
Prerequisite(s): At least a C- in C S 172 or C S 460 or consent of instructor.

C S 463. Introduction to Data Structures Transition
3 Credits
Design, implementation, use of fundamental abstract data types and their algorithms: lists, stacks, queues, deques, trees; imperative and declarative programming. Internal sorting; time and space efficiency of algorithms. Cannot be used in a C S student’s program of study. Consent of Instructor required.
Prerequisite(s): At least a C- in C S 172 or C S 460 or consent of instructor.

C S 464. Machine Programming and Organization Transition
3 Credits
Computer structure, instruction execution, addressing techniques; programming in machine and assembly languages. Cannot be used in a C S student’s program of study. Consent of Instructor required.
Prerequisite(s): At least a C- in C S 172 or C S 460 or consent of instructor.

C S 465. Discrete Math for Computer Science Transition
3 Credits
Logical connectives, sets, functions, relations, graphics, trees, proofs, induction, and application to computer science. Cannot be used in a C S student’s program of study. Consent of Instructor required.
Prerequisite(s): At least a C- in C S 172 or C S 460 or consent of instructor.

C S 466. Compilers and Automata Transition
3 Credits
Methods, principles, and tools for programming language processor design; basics of formal language theory (finite automata, regular expressions, context-free grammars); development of compiler components. For C S graduate students only; cannot be used in a students program of study. Consent of Instructor required.
Prerequisite(s): At least a C in C S 271 or C S 462, in C S 272 or C S 463, in C S 273 or C S 464, in C S 278 or C S 465, or consent of instructor.

C S 468. Software Development Transition
3 Credits
Software specification, design, testing, maintenance, documentation; informal proof methods; team implementation of a large project. Cannot be used in a C S student’s program of study. Consent of Instructor required.
Prerequisite(s): At least a C- in C S 271 or C S 462, in C S 272 or C S 463, or consent of instructor.

C S 469. Data Structure and Algorithms Transition
3 Credits
Prerequisite(s): At least a C- in C S 272 or C S 463, in C S 278 or C S 465, or consent of instructor.

C S 471. Programming Language Structure I
3 Credits
Syntax, semantics, implementation, and application of programming languages; abstract data types; concurrency. Not for C S graduate students.
Prerequisite(s): C- or better in C S 370 and C S 371.

C S 473. Architectural Concepts I
3 Credits
Comparison of architectures to illustrate concepts of computer organization; relationships between architectural and software features. Not for C S graduate students.
Prerequisite(s): At least a C- in C S 273 and C S 370.

C S 474. Operating Systems I
3 Credits
Operating system principles and structures, and interactions with architectures. Not for C S graduate students.
Prerequisite(s): At least a C- in C S 273, C S 371, and C S 372.

C S 475. Artificial Intelligence I
3 Credits
Fundamental principles and techniques in artificial intelligence systems. Intelligent Agents; solving problems by searching; local search techniques; game-playing agents; constraint satisfaction problems; knowledge representation and reasoning. Further selected topics may also be covered. Not for C S graduate students.
Prerequisite(s): At least a C- in C S 272 and C S 278.
C S 476. Computer Graphics I
3 Credits
Languages, programming, devices, and data structures for representation and interactive display of complex objects. Not for C S graduate students.
Prerequisite(s): At least C- in C S 370 or C S 371.

C S 477. Digital Game Design
3 Credits
An introduction to digital game design. Topics include design, development, and playtesting of games. The course is structured to use team-based learning. Not for C S graduate students. May be repeated up to 3 credits.
Prerequisite(s)/Corequisite(s): C S 371 or consent of instructor.

C S 478. Computer Security
3 Credits
Introduction to the art and science of computer security. Fundamentals of computer security including elementary cryptography, authentication and access control, security threats, attacks, detection and prevention in application software, operating systems, networks and databases. May be repeated up to 3 credits.
Prerequisite(s): At least a C- in C S 272, C S 273 or consent of instructor.

C S 479. Special Topics
1-6 Credits
Topic announced in the Schedule of Classes. May be repeated if subtitle is different. Not for C S graduate students. May be repeated up to 6 credits.

C S 480. Linux System Administration
3 Credits
Basic system administration for Linux environments. Topics include user management, file systems, security, backups, system monitoring, kernel configuration and other relevant aspects of system administration. Not for Computer Science graduate students.

C S 481. Visual Programming
3 Credits
Design and implementation of programs using visual (i.e. dataflow or diagrammatic) programming techniques, with an emphasis on real-time data processing. Students will learn how to design visual programs, including how to handle cycles and state maintenance, and will learn to process audio, video, and other data using visual programs. Not for C S graduate students.
Prerequisite(s): C- or better in C S 272 and C S 278.

C S 482. Database Management Systems I
3 Credits
Database design and implementation; models of database management systems; privacy, security, protection, recovery. Not for C S graduate students.
Prerequisite(s): At least a C- in C S 272 and C S 278.

C S 483. Introduction to Robotics
3 Credits
Basic AI-based robotic architecture and concepts, with an emphasis on building and programming mobile robots. Not for C S graduate students. Consent of Instructor required.
Prerequisite(s): At least a C- in C S 272 and C S 273.

C S 484. Computer Networks I
3 Credits
Fundamental concepts of computer communication networks: layered network architecture, network components, protocol stack and service. Example of application, transport, network and data link layers, protocols primarily drawn from the Internet (TCP UDP, and IP) protocol multimedia networks; network management and security. Not for C S graduate students. Consent of Instructor required.
Prerequisite(s): At least a C- in C S 272 and CS 273.

C S 485. User Interface Design
3 Credits
Covers iterative, human-centered interface design, including prototyping and evaluation. Basics of graphic design and visualization. Not for C S graduate students. May be repeated up to 3 credits.
Prerequisite(s): At least C- in C S 371.

C S 486. Bioinformatics
3 Credits
Introduction to bioinformatics and computational biology. Computational approaches to sequences analysis, protein structure prediction and analysis, and selected topics from current advances in bioinformatics. Not for C S graduate students.
Prerequisite(s): At least a C- in C S 272 and C S 278.

C S 487. Applied Machine Learning I
3 Credits
An introductory course on practical machine learning. An overview of concepts for both unsupervised and supervised learning. Topics include classification, regression, clustering, and dimension reduction. Classical methods and algorithms such as linear regression, neural networks, support vector machines, and ensemble approaches. Recent techniques such as deep learning. Focused on applying of machine learning techniques in application domains. Not for Graduate Majors. Crosslisted with: C S 519.
Prerequisite(s): At least a C- in C S 272, MATH 191G; or consent of instructor.

C S 488. Introduction to Data Mining
3 Credits
Techniques for exploring large data sets and discovering patterns in them. Data mining concepts, metrics to measure its effectiveness. Methods in classification, clustering, frequent pattern analysis. Selected topics from current advances in data mining. Taught with C S 508.
Prerequisite(s): At least a C- in C S 272 and C S 278.

C S 489. Bioinformatics Programming
3 Credits
Application of computer programming languages to address data processing and analysis problems in modern molecular biology. R/Perl/Python programming; Web API programming. Automatic manipulation of next generation sequence data, analysis of large gene expression tables, access to online biological databases, performing statistical analysis, and visualization of data and results. Taught with C S 509.
Prerequisite(s): At least a C- in C S 272 and C S 278.

C S 491. Parallel Programming
3 Credits
Programming of shared memory and distributed memory machines; tools and languages for parallel programming; techniques for parallel programming; parallel programming environments. Not for C S graduate students.
Prerequisite(s): C- or better in C S 370 or consent of instructor.
C S 493. Algorithm Design and Implementation
3 Credits
This course introduces the basic knowledge of designing classical algorithms and implementing these algorithms using a programming language. In particular, the course teaches various data structures, including graphs and balanced binary search trees, and efficient schemes to implement these data structures. This course also teaches basic algorithm design techniques including divide-and-conquer, greedy scheme, and dynamic programming. This course covers graph algorithms, including graph traversals (depth-first search and breadth-first search), connectivity, shortest paths, and minimum spanning trees. May be repeated up to 3 credits. Graduate standing. Not for CS students. Restricted to: CS majors.
Prerequisite(s): At least a C- in CS 272, or Consent of Instructor.

C S 494. Introduction to Smart Grids
3 Credits
This course is an introduction to the technologies and design strategies associated with the Smart Grid. The emphasis will be on the development of communications, energy delivery, coordination mechanisms, and management tools to monitor transmission and distribution networks. Topics include: Smart grid introduction and evolution; Power systems; Networking and transport control; Artificial intelligence & agent coordination; Data mining for smart grids.
Prerequisite(s): At least a C- in CS 272 and a C- in E E 201 or 280; or Consent of instructor.

C S 496. Cloud and Edge Computing
3 Credits
The course presents a top-down view of cloud computing, from applications and administration to programming and infrastructure. Its main focus is on the concepts of networking and parallel programming for cloud computing and large scale distributed systems which form the cloud infrastructure. The topics include: overview of cloud computing, cloud systems, parallel processing in the cloud, distributed storage systems, virtualization, security in the cloud, and multicore operating systems. Students will study state-of-the-art approaches to cloud computing followed by large cloud corporations, namely Google, Amazon, Microsoft, and Yahoo. Students will also apply what they learn through project developments using Amazon Web Services. Not for graduate CS majors. Crosslisted with: CS 522.
Prerequisite(s): A C- in CS 372; background in CS 484/504 is preferred or consent of instructor.

C S 502. Database Management Systems I
3 Credits
Database design and implementation; models of database management systems; privacy, security, protection, recovery; requires more advanced graduate work than CS 482. Students are expected to have solid knowledge of data structures and discrete mathematics.

C S 503. Introduction to Robotics
3 Credits
Basic AI-based robotic architectures and concepts, with an emphasis on building and programming mobile robots; requires more advanced graduate work than CS 483. Students are expected to have solid knowledge of data structures and machine-level programming.

C S 504. Computer Networks I
3 Credits
Fundamental concepts of computer communication networks: layered network architecture, network components, protocol stack and service. Example of application, transport, network and data link layers, protocols primarily drawn from the Internet (TCP/UDP and IP) protocol suite; local and wide area networks, wireless and mobile networks, multimedia networks; network management and security; requires more advanced graduate work than CS 484. Students are expected to have solid knowledge of data structures, machine-level programming. Knowledge of statistics (at the level of STAT 371 or 470) is recommended.

C S 505. Artificial Intelligence I
3 Credits
Fundamental principles and techniques in artificial intelligence systems. Knowledge representation formalisms; heuristic problem solving techniques; automated logical deduction; robot planning methods; algorithmic techniques for natural language understanding, vision and learning; requires more advanced graduate work than CS 475. Students are expected to have strong knowledge of algorithms and data structures (at the level of CS 372).

C S 506. Computer Graphics I
3 Credits
Languages, programming, devices, and data structures for representation and interactive display of complex objects. Requires more advanced graduate work than CS 476. Students are expected to have knowledge of compilers design and software engineering equivalent to CS 370 and CS 371.

C S 508. Introduction to Data Mining
3 Credits
Techniques for exploring large data sets and discovering patterns in them. Data mining concepts, metrics to measure its effectiveness. Methods in classification, clustering, frequent pattern analysis. Selected topics from current advances in data mining. Students are expected to have a preparation in Discrete Mathematics and Data Structures equivalent to CS 272 and CS 278. Requires more advanced graduate work than CS 488. Crosslisted with: CS 488.

C S 509. Bioinformatics Programming
3 Credits
Application of computer programming languages to address data processing and analysis problems in modern molecular biology. R/Perl/Python programming; Web API programming. Automatic manipulation of next generation sequence data, analysis of large gene expression tables, access to online biological databases, performing statistical analysis, and visualization of data and results. Requires a preparation in discrete mathematics and data structures equivalent to CS 272 and CS 278. Taught with CS 489.

C S 510. Automata, Languages, Computability
3 Credits
Regular and context-free languages, pushdown and finite-state automata, turing machines, models of computation, halting problems. Students are expected to have knowledge of compilers design and algorithms equivalent to CS 370 and CS 372.

C S 511. Logic and Constraint Logic Programming
3 Credits
Declarative programming techniques; foundations of logic programming; programming in Prolog; constraint logic programming; application of logic and constraint programming; requires more advanced graduate work than CS 472. Students are expected to have knowledge of data structures and discrete mathematics equivalent to CS 272 and CS 278.
C S 512. Computer Systems Modeling and Simulation
3 Credits
Basic concepts of modeling computer systems: continuous and discrete
time models, states and transition, probabilistic models. Structures of
simulation programs, time driven and event driven simulation, simulation
on captured and synthetic traces, generation of random variables,
queuing models, Markov chains, random walks, Poisson, Markov, renewal
branching and Brownian motion processes, model validation and data
analysis; requires more advanced graduate work than C S 492. Students
are expected to have knowledge of algorithms and data structures
equivalent to C S 372.

C S 513. Computer Security
3 Credits
Introduction to the art and science of computer security. Fundamentals
of computer security including elementary cryptography, authentication
and access control, security threats, attacks, detection and prevention
in application software, operating systems, networks and databases.
Recommended knowledge of materials in C S 272 and C S 273. May be
repeated up to 3 credits.
Prerequisite(s): At least a C in C S 273 or consent of instructor.

C S 514. Introduction to Smart Grids
3 Credits
This course is an introduction to the technologies and design strategies
associated with the Smart Grid. The emphasis will be on the development
of communications, energy delivery, coordination mechanisms, and
management tools to monitor transmission and distribution networks.
Topics include: Smart grid introduction and evolution; Power systems;
Networking and transport control; Artificial intelligence & agent
coordination; Data mining for smart grids. Requires more advanced work
than C S 494.
Prerequisite(s): At least a C in C S 272 and a C- in E E 201 or 280; or
Consent of instructor.

C S 515. User Interface Design
3 Credits
Covers iterative, human-centered interface design, including prototyping
and evaluation. Basics of graphic design and visualization. Requires more
advanced graduate work than C S 485 with an emphasis on studying
recent research in human-computer interaction. Students are expected
to have knowledge of software engineering equivalent to C S 371. May be
repeated up to 3 credits.

C S 516. Bioinformatics
3 Credits
Introduction to bioinformatics and computational biology. Computational
approaches to sequences analysis, protein structure prediction and
analysis, and selected topics from current advances in bioinformatics;
requires more advanced graduate work than C S 486. Students are
expected to have a knowledge of algorithms and data structures
equivalent to C S 372 or exposure to Biology (equivalent to BIOL 221 or
BIOL 311).

C S 517. Digital Game Design
3 Credits
An introduction to digital game design. Topics include design,
development, and playtesting of games. The course is structured to
use team-based learning. Requires more advanced graduate work than
C S 477 with deeper attention to a team game project. May be repeated
up to 3 credits.

C S 518. Visual Programming
3 Credits
Design and implementation of programs using visual (i.e. dataflow or
diagrammatic) programming techniques, with an emphasis on real-time
data processing. Students will learn how to design visual programs,
including how to handle cycles and state maintenance, and will learn to
process audio, video, and other data using visual programs. Requires
more advanced graduate work than C S 481. May be repeated up to 3
credits.
Prerequisite(s): at least a C in C S 272 and C S 278.

C S 519. Applied Machine Learning I
3 Credits
An introductory course on practical machine learning. An overview
of concepts for both unsupervised and supervised learning. Topics
include classification, regression, clustering, and dimension reduction.
Classical methods and algorithms such as linear regression, neural
networks, support vector machines, and ensemble approaches. Recent
techniques such as deep learning. Focused on applying of machine
learning techniques in application domains. Crosslisted with: C S 487.

C S 521. Parallel Programming
3 Credits
Programming of shared memory and distributed memory machines; tools
and languages for parallel programming; parallelizing compilers; parallel
programming environments; requires more advanced graduate work than
C S 491. Students are expected to have knowledge of programming and
machine organization equivalent to C S 271 and C S 273.

C S 522. Cloud and Edge Computing
3 Credits
The course presents a top-down view of cloud computing, from
applications and administration to programming and infrastructure. Its
main focus is on the concepts of networking and parallel programming
for cloud computing and large scale distributed systems which form the
cloud infrastructure. The topics include: overview of cloud computing,
cloud systems, parallel processing in the cloud, distributed storage
systems, virtualization, security in the cloud, and multicore operating
systems. Students will study state-of-the-art approaches to cloud
computing followed by large cloud corporations, namely Google, Amazon,
Microsoft, and Yahoo. Students will also apply what they learn through
project developments using Amazon Web Services. Might have additional
requirements for graduate students. Crosslisted with: C S 496.
Prerequisite(s): background in C S 484/504 is preferred or consent of
instructor.

C S 570. Analysis of Algorithms
3 Credits
Techniques for design and analysis of algorithms; time and space
complexity; proving correctness of programs. Particular algorithms such
as sorting, searching, dynamic programming. NP complete problems.
Students are expected to have knowledge of algorithms and data
structures equivalent to C S 372.

C S 571. Programming Language Structure II
3 Credits
Formal semantics of programming languages. Students are expected to
have knowledge of algorithms and data structures equivalent to C S 372,
and knowledge of principles of programming languages equivalent to
C S 471.

C S 572. Advanced Algorithms
3 Credits
Design, analysis, and use of important algorithms and data structures.
Prerequisite: C S 570 or consent of instructor.
C S 573. Architectural Concepts II
3 Credits
Advanced topics related to computer architecture, guided by the current literature. Students are expected to have knowledge of computer architectures equivalent to C S 473 and of operating systems equivalent to C S 474. Crosslisted with: E E564.

C S 574. Operating Systems II
3 Credits
Advanced topics related to operating system principles, guided by the current literature. Students are expected to have knowledge of computer architectures and operating systems equivalent to C S 473 and C S 474.

C S 575. Artificial Intelligence II
3 Credits
Covers advanced theory and application of artificial intelligence. Concentration on several specific research areas, such as knowledge representation, problem solving, common-sense reasoning, natural language understanding, automated tutoring systems, learning systems. Students are expected to have knowledge of artificial intelligence equivalent to C S 475.

C S 579. Special Topics
1-6 Credits
Topic announced in the Schedule of Classes.

C S 581. Advanced Software Engineering
3 Credits
Advanced tools and methods for developing large software systems. Topics include object-oriented modeling and design, component architectures, templates and generic programming, software configuration and revision control, static and dynamic analysis tools, model checking, advanced testing, and verification. Students are expected to have knowledge of software engineering equivalent to C S 371.

C S 582. Database Management Systems II
3 Credits
Advanced data models and abstractions, dependencies, implementations, languages, database machines, and other advanced topics. Students are expected to have knowledge of data base management systems equivalent to CS 482.

C S 584. Computer Networks II
3 Credits
Advanced topics in computer networks. Covers advanced topics in networking, with emphasis on wireless, and IP networks. Students are expected to have knowledge of computer networks equivalent to C S 484, and of statistics equivalent to STAT 371 or STAT 470.

C S 586. Algorithms in Systems Biology
3 Credits
The course will introduce important algorithms and computational models used in systems biology to study molecular mechanisms for cellular dynamics, processes, and systems. Cellular processes, such as metabolism and signal transduction, are studied as systems and networks quantitatively from high throughput molecular measurements. The topics include molecular biological systems, network alignment, model simulation, network inference, model optimization, and hybrid models. Students will be able to construct models and analyze their properties in the context of molecular biological systems. Students are expected to have knowledge of algorithms and data structures equivalent to C S 372.

C S 589. Special Research Problems
1-6 Credits
Faculty-supervised investigation, to culminate in a written report. May be repeated; maximum of 6 credits may be applied toward M.S. degree. Restricted to majors.
Prerequisite: written agreement with faculty supervisor.

C S 598. Master's Project
1-6 Credits
Project-oriented capstone course to be completed by M.S. students under supervision of their advisor. Maximum of 6 credits may be applied toward M.S. degree. Restricted to C S majors.
Prerequisite: written agreement with instructor.

C S 599. Master's Thesis
1-6 Credits (1-6)
Thesis to be developed by M.S. Students under supervision of their advisor. May be repeated for a maximum of 6 credits. Restricted to majors.
Prerequisite: consent of instructor.

C S 600. Pre-dissertation Research
1-15 Credits
Pre-dissertation research.

C S 700. Doctoral Dissertation
1-15 Credits
Dissertation.

Office Location: Science Hall 123
Phone: (575) 646-3723
Website: www.cs.nmsu.edu (https://www.cs.nmsu.edu)