PLANT AND ENVIRONMENTAL SCIENCES

Undergraduate Program Information
The undergraduate program in Plant and Environmental Science prepares you for a variety of careers in agriculture and related fields. Accordingly, a flexible curriculum has been designed that will allow specific programs to be developed in consultation with your academic advisor. Programs may also be developed if you wish to prepare for advanced studies in graduate school. In addition to the courses listed for each major, 35 credits must be taken in the College of Agricultural, Consumer and Environmental Sciences, and the university general education requirements must be met.

The minors require a minimum of 18 credits of which at least 9 hours must be at the 300 or higher level. Specific coursework requirements apply. See advisor for course requirements and scheduling.

Graduate Program Information
More than ever, we are linked in an interconnected world: both in agriculture and sustainability of environmental systems. The department has programs in

- plant sciences,
- environmental science,
- soil science,
- water management,
- natural resources management and
- turf management.

Students trained in these areas are in demand for U.S. and international positions. This demand is at all levels of training—BS, MS, and Ph.D. Therefore, the course work and original research in Plant and Environmental Sciences leading to the Master of Science and Doctor of Philosophy are designed for and have proven to be successful in preparing students for commercial companies, educational institutions, governmental agencies and private production enterprises.

The student may emphasize study in several discipline areas described in the following pages.

- The agronomy section emphasizes sustainable crop production, plant-pest/disease/weed interactions, soil-water-plant relations, crop physiology, and breeding and genetics of cotton, alfalfa, maize and peanuts.
- The genetics section places special emphasis on genetic basis of agronomic or horticultural traits, applied bioinformatics, gene regulation and genomics.
- The environmental and soil science sections emphasize environmental quality and ecosystem services, bioremediation, recycling of organic wastes and wastewater, water use efficiency, soil-plant relations, soil-geomorphology and desert ecology, and the fertility, chemistry, physics, and microbiology of soils, including forest soils.
- The horticulture section emphasizes the creative use of plants by humans, and studies on the technical advancements in the husbandry of most economic commodity groups of fruits, vegetables, or ornamentals as well as managed turf. Emphasis may be in breeding and genetics of chile or onions, plant growth and development, nutrition, dormancy and cold hardiness, plant stress (water and/or salinity) response, fruit and vegetable physiology, forestry, and turfgrass.

Most students will be expected to complete a thesis. The research detailed in a thesis should be of a scope and quality to merit publication in a refereed journal. Depending on prior training and experience, a non-thesis option is available subject to approval by a departmental committee. The non-thesis option requires completion of a research project and paper of limited scope. In both the thesis and non-thesis options, suitability of the research project and resulting thesis or paper will be judged by the student’s graduate committee. A minor is recommended and may be taken in chemistry, biology, molecular biology, environmental management, applied statistics, toxicology or other areas.

Prerequisite to major graduate work is completion of a curriculum essentially equivalent to that required by the department for the BS degree at New Mexico State University.

Degrees for the Department
Agronomy - Bachelor of Science in Agriculture (http://catalogs.nmsu.edu/nmsu/agricultural-consumer-environmental-sciences/plant-environmental-sciences/agronomy-bachelor-science-agriculture)

Horticulture - Bachelor of Science in Agriculture (http://catalogs.nmsu.edu/nmsu/agricultural-consumer-environmental-sciences/plant-environmental-sciences/horticulture-bachelor-science-agriculture)

Soil Science - Bachelor of Science in Agriculture (http://catalogs.nmsu.edu/nmsu/agricultural-consumer-environmental-sciences/plant-environmental-sciences/soil-science-bachelor-science-agriculture)

Turfgrass Science and Management - Bachelor of Science in Agriculture (http://catalogs.nmsu.edu/nmsu/agricultural-consumer-environmental-sciences/plant-environmental-sciences/turfgrass-science-management-bachelor-science-agriculture)

Environmental Science - Bachelor of Science in Environmental Science (http://catalogs.nmsu.edu/nmsu/agricultural-consumer-environmental-sciences/plant-environmental-sciences/environmental-science-bachelor-science-environmental-science)

Genetics and Biotechnology - Bachelor of Science in Genetics (http://catalogs.nmsu.edu/nmsu/agricultural-consumer-environmental-sciences/plant-environmental-sciences/genetics-biotechnology-bachelor-science-genetics)

Horticulture - Master of Science (http://catalogs.nmsu.edu/nmsu/agricultural-consumer-environmental-sciences/plant-environmental-sciences/horticulture-master-science)

Minors for the Department

Genetics and Biotechnology - Undergraduate Minor (http://catalogs.nmsu.edu/nmsu/agricultural-consumer-environmental-sciences/plant-environmental-sciences/genetics-biotechnology-undergraduate-minor)

Professor, Rolston St. Hilaire, Department Head

Professors Angadi, Bosland, Cramer, Guldan, Hanan, Leinauer, Picchioni, Pratt, Puppala, Ray, Sengupta-Gopalan, Shukla, Utery, Zhang; Associate Professors Burney, Flynn, Goss, Grover, Heerema, Holguin, Idowu, Lombard, Marsalis, Yao, Assistant Professors Brungard, Djaman, Ghimire, Gioannini, Guzman, Pietrasiak, Webb; College Professors Lauriault, Stringam; College Associate Professor DuBois; College Assistant Professors Edwards, Jarvis, Rodriguez-Uribe Emeritus O’Connell;

R. St. Hilaire, Department Head, Ph.D. (Iowa State University)—plant stress physiology and landscape horticulture; S. Angadi, Ph.D. (University of Manitoba, Canada)—crop physiology; D.L. Auld, Ph.D. (Montana State University)—plant genetics; W. Boeing, Ph.D. (Louisiana State University)—aquatic ecology; P.W. Bosland, Assistant Department Head, Ph.D. (University of Wisconsin, Madison)—chile breeding and genetics; C. Brungard, Ph.D. (Utah State University, Logan)–pedology; O. Burney, Ph.D. (Purdue University, West Lafayette)—silviculture and forest biology; K.C. Carroll, Ph.D. (University of Arizona)—hydrology and water resources; C. S. Cramer. Ph.D. (North Carolina State University)—onion breeding and horticulture; M. Darapuneni, Ph.D. (Texas A&M, College Station)—Agronomy and semi-arid crop rotations; K. Djaman, Ph.D. (University of Nebraska-Lincoln)—soil & water resources and irrigation engineering; D. DuBois, Ph.D. (University of Nevada)—atmospheric science; B. Edwards, Ph.D. (Louisiana State University)—geomorphology, Aeolian processes; R. Flynn, Ph.D. (Auburn University)—soil and water quality; R. Ghimire, Ph.D. (University of Wyoming, Laramie)—soil & crop management; R. Gioannini, M.S. (New Mexico State University)—ornamental horticulture, landscape design; R.M. Goss, Ph.D. (University of Nebraska, Lincoln)—turf science; K. Grover, Ph.D. (Pennsylvania State University)—agronomy; S.J. Guldan, Ph.D. (University of Minnesota)—sustainable agriculture; I. Guzman, Ph.D. (New Mexico State University)—horticulture; N. Hanan, Ph.D. (Queen Mary College, UK)—dried fruits; S.F. Hanson, Ph.D. (University of Wisconsin-Madison)—genetics and microbiology; R.J. Heerema, Ph.D. (University of California, Davis)—pecan; F.O. Holguin, Ph.D. (New Mexico State University)—biochemical analysis; J. Idowu, Ph.D. (Cranfield University, United Kingdom)—agronomy and land management; J. Jarvis, Ph.D. (Florida State University, Tallahassee)—chemical analysis, analytical instrumentation; B. Leinauer, Ph.D. (Hohenheim University, Germany)—turfgrass; K. Lombard, Ph.D. (New Mexico State University)—horticulture; M. Marsalis, Ph.D. (Texas Tech University)—forages; G. Niu, Ph.D. (Chiba University, Japan)—horticulture; G.A. Picchioni, Ph.D. (Texas A&M University)—plant-mineral relations; N. Pietrasiak, Ph.D. (University of California, Riverside)—soil and water sciences; R. Pratt, Ph.D. (Purdue University)—plant breeding and genetics; N. Puppala, Ph.D. (New Mexico State University)—plant breeding and genetics; I.M. Ray, Ph.D. (University of Wisconsin-Madison)—alfalfa breeding and genetics; L. Rodriguez-Uribe. Ph.D. (New Mexico State University)—molecular genetics; D. Rucker, Ph.D. (University of Arizona)—hydrogeophysics; C. Sengupta-Gopalan, Ph.D. (Ohio State University)—biochemical genetics; M.K. Shukla, Ph.D. (University of Agricultural Sciences Vienna, Austria)—environmental soil physics; B. Stringam, Ph.D. (Utah State University)—biological and agricultural engineering; C. Steele, Ph.D. (King’s College, University of London, United Kingdom)—range soils; A.L. Utery, Ph.D. (University of California, Riverside)—environmental soil chemistry; S. J. Walker, Ph.D. (New Mexico State University)—horticulture; N. Webb Ph.D. (University of Queensland, Australia)—aeolian process, land degradation processes and rangeland management; S. Yao, Ph.D. (Cornell University)—pomology/horticulture; J. Zhang, Ph.D. (University of Arkansas, Fayetteville)—cotton breeding, genetics, and genomics

Emeritus

M.A. O’Connell, Ph.D. (Cornell University)—plant biochemistry and molecular genetics;

Agronomy Courses

AGRO 100G. Introductory Plant Science
4 Credits (3+2P)
Introduction to the physical, biological, and chemical principles underlying plant growth and development in managed ecosystems. In the laboratory portion of the class, students perform experiments demonstrating the principles covered in lecture. The course uses economic plants and agriculturally relevant ecosystems to demonstrate basic principles. Appropriate for nonscience majors. Same as HORT 100G.

AGRO 200. Special Topics
1-4 Credits (1-4)
Specific subjects and credits to be announced in the Schedule of Classes. Maximum of 4 credits per semester. No more than 9 credits toward a degree. May be repeated up to 9 credits. Consent of Instructor required.

AGRO 250. Plant Propagation
3 Credits (2+2P)
Practical methods of propagating horticultural plants by seed, cuttings, layering, grafting, division and tissue culture. Examination of relevant physiological processes involved with successful plant propagation techniques. Crosslisted with HORT 250.

AGRO 300. Special Topics
1-4 Credits (1-4)
Specific subjects and credits to be announced in the Schedule of Classes. Maximum of 4 credits per semester. No more than 9 credits toward a degree. May be repeated up to 9 credits. Consent of Instructor required. Restricted to Las Cruces campus only.
AGRO 303V. Genetics and Society
3 Credits
Relates the science of genetics with social ramifications. Ways in which genetics and evolution interact with social, political, and economic issues. Includes genetic engineering, gene therapy, DNA finger-printing, ancient DNA, plant and animal improvement, and future prospects. Students required to formulate value judgments on contemporary biological issues that will impact society. Crosslisted with: GENE 303V.

AGRO 305. Principles of Genetics
3 Credits
Covers fundamental principles of reproduction, variation, and heredity in plants and animals. Crosslisted with: ANSC 305, BIOL 305, HORT 305 and GENE 305.
Prerequisite(s): BIOL 111G, BIOL 211G and either CHEM 111G or CHEM 115.

AGRO 311. Introduction to Weed Science
4 Credits
Principles of weed science with emphasis on characteristics of invasive plants, methods of integrated weed management, and current issues impacting weed management. Identification of local weeds. Same EPWS 311.
Prerequisite: junior standing or consent of instructor and CHEM 111G and BIOL 211G.

AGRO 315. Crop Physiology
3 Credits
Whole plant physiological processes as related to growth, development, yield, quality and post harvest physiology of crop plants within the environment of the crop community. Crosslisted with: HORT 315
Prerequisite(s): EPWS/BIOL 314 or consent of instructor.

AGRO 365. Principles of Crop Production
4 Credits (3+3P)
Basic principles of crop production including environmental and physiological factors limiting production, plant nutrition and soil science, soil-water management, cropping systems and management, pest management, and economic factors influencing crop production. Crosslisted with: HORT 365
Prerequisite(s): AGRO/HORT 100, CHEM 111G or equivalent and MATH 120 or equivalent.

AGRO 377. Introduction to Turfgrass Management
4 Credits (3+3P)
Establishment and maintenance of turfgrass with emphasis on seeding methods, soil and water management, mowing, disease, insects and turfgrass varieties. Consent of instructor required. Crosslisted with: HORT 377

AGRO 391. Internship
1-6 Credits
Professional work experience under the joint supervision of the employer and a faculty member. A written report is required. No more than 6 credits toward a degree. Consent of Instructor required. S/U Grading (S/U, Audit).
Prerequisite(s): Consent of instructor.

AGRO 447. Seminar
1 Credit
Organization, preparation, and presentation of current topics in agronomy, horticulture, and soil science. Same as HORT 447 and SOIL 447.

AGRO 449. Special Problems
1-3 Credits (1-3)
Research problem, experience training, or other special study approved by a faculty adviser. Maximum of 3 credits per semester and a grand total of 6 credits. May be repeated up to 6 credits. Consent of Instructor required.

AGRO 450. Special Topics
1-4 Credits (1-4)
Specific subjects to be announced in the Schedule of Classes. Maximum of 4 credits per semester and a total of 9 credits toward a degree. May be repeated up to 9 credits. Consent of Instructor required.

AGRO 462. Plant Breeding
3 Credits
Principles and practices involved with the genetic improvement of plants. May be repeated up to 3 credits.
Prerequisite(s): ANSC/AGRO/Biol/HORT/Gene 305 or Gene 315 and Gene 320.

AGRO 471. Plant Mineral Nutrition
3 Credits
Basic and applied aspects of plant requirements for soil-derived minerals and the processes whereby minerals are acquired, absorbed, translocated, and utilized throughout the plant. Same as HORT 471 and EPWS 471.
Prerequisite: EPWS/Biol 314, or concurrent enrollment, or consent of instructor.

AGRO 483. Sustainable Production of Agronomic Crops
4 Credits (3+2P)
Characteristics and objectives of sustainable agricultural systems with application to the production, utilization, and improvement of cereal grain, fiber, forage and oilseed crops.
Corequisite(s): AGRO 365 or HORT 365.

AGRO 492. Diagnosing Plant Disorders
3 Credits (2+3P)
Systematic diagnosis of the physiological, pathological, and entomological causes of plant disorders. Same as EPWS 492 and HORT 492.
Prerequisites: EPWS 303 and EPWS 310.

AGRO 500. Special Topics
1-4 Credits
Specific subjects and credits to be announced in the Schedule of Classes. Maximum of 4 credits per semester. No more than 9 credits toward a degree.

AGRO 505. Research Orientation
4 Credits (3+2P)
Training in writing research proposals, presentation of research results, and interpretation of research results. Crosslisted with: HORT 505 and SOIL 505

AGRO 506. Plant Genetics
3 Credits
Advanced treatment of the principles of classical genetics and heredity with emphasis on the nature and action of the gene including molecular analysis. May be repeated up to 3 credits. Crosslisted with: HORT 506. BCHE 341 recommended.
Prerequisite(s): AGRO 305/GENE 305/HORT 305/BIOL 305/ANSC 305 or consent of instructor.
AGRO 511. Introduction to Weed Science (f)
4 Credits
Covers the principles of weed science with emphasis on characteristics of invasive plants, methods of integrated weed management, and current issues impacting weed management. Includes identification of local weeds. Research paper required for graduate credit. Same as EPWS 511.
Prerequisites: CHEM 111G or BIOL 211G, or consent of instructor.

AGRO 514. Soil-Plant Relationships
3 Credits
Physical, chemical, and biological soil environment as it affects plant and crop growth. Same as HORT 514 and SOIL 514.
Prerequisites: BIOL 314, SOIL 252.

AGRO 515. Crop Physiology
3 Credits
Whole plant physiological processes as related to growth, development, yield, quality and post harvest physiology of crop plants within the environment of the crop community. Crosslisted with: HORT 515
Prerequisite(s): EPWS/BIOL 314 or consent of instructor.

AGRO 516. Molecular Analysis of Complex Traits
3 Credits
Provide a comprehensive overview of molecular genetic analysis of complex phenotypes, including case histories/experiments in plants, animals and humans. Emphasize technological developments in DNA marker technologies and their application to molecular quantitative genetics. Explore the efficient application of these technologies in the future to complex genetic systems, breeding, and other areas of life sciences. Same as HORT 516.
Prerequisite: AGRO 305 or consent of instructor.

AGRO 525. Scientific Writing- How to be a Productive and Effective Writer
1-3 Credits (1-3)
Students will learn to improve their writing skills so that their manuscript preparation process is more efficient and productive. Students will also gain experience in peer-review. Crosslisted with: HORT 525, EPWS 525, SOIL 525, AGRO 625, HORT 625 and SOIL 625.

AGRO 526. Scientific Writing- How to be a Productive and Effective Writer
1-3 Credits (1-3)
Students will learn to improve their writing skills so that their manuscript preparation process is more efficient and productive. Students will also gain experience in peer-review. Crosslisted with: HORT 525, EPWS 525, SOIL 525, AGRO 625, HORT 625 and SOIL 625.

AGRO 533. Environmental Physiology of Plants
3 Credits
Integral responses of plants and crop productivity to naturally occurring and modified environmental factors such as radiation, temperatures, water vapor, carbon dioxide, and air flow. Same as BIOL/HORT 533.
Prerequisite: BIOL 314 or consent of instructor.

AGRO 590. Graduate Seminar
1 Credit
Current research discussions presented by masters level graduate students. Not more than one credit toward the degree. Same as HORT/SOIL 590. Crosslisted with: HORT 590 and SOIL 590.

AGRO 595. Internship
1-6 Credits
Supervised professional on-the-job learning experience. Limited to Master of Agriculture candidates. Not more than 6 credits toward the degree.

AGRO 596. Masters Proposal
1 Credit
Current research proposal written by maters level graduate students. Consent of Instructor required. Crosslisted with: E S 596, GENE 596, HORT 596 and SOIL 596. Restricted to: Masters HORT; Masters PLEN majors.
Prerequisite(s): Master level graduate students.

AGRO 597. University Teaching Experience
1-3 Credits (1-3)
Certain graduate students will be permitted to teach up to one-third of one AGRO/HORT/SOIL/ES course. The student will prepare and deliver lectures and will prepare, administer, and grade at least one examination. The professor in charge of the course will attend and evaluate the student's lectures. Consent of instructor required. Restricted to: Main campus only. Restricted to Agronomy and Horticulture Graduate Students. Crosslisted with: HORT 597 and SOIL 597.

AGRO 598. Special Research Programs
1-6 Credits
Individual investigations, either analytical or experimental. Maximum of 6 credits per semester. No more than 9 credits towards degree. Same as SOIL 598.

AGRO 599. Master's Thesis
15 Credits
Thesis.

AGRO 600. Doctoral Research
1-15 Credits
Research.

AGRO 609. Breeding for Plant Disease Resistance
3 Credits
A practically-oriented course of lectures and discussion on concepts and principles of breeding for disease and pest resistance. Labs familiarize students with preparation, quantification, and application of inoculum to hosts. Same as HORT 609.

AGRO 610. Advanced Crop Breeding
4 Credits (3+3P)
Applications of breeding principles to crop improvement. Emphasis on breeding methodologies using modern techniques, including biotechnology. Same as HORT 610.
Prerequisite: AGRO 462 or consent of instructor.

AGRO 620. Instrumentation in Agronomy
3 Credits
Use of instruments used in research in all areas of agronomy including gas chromatography, high performance liquid chromatography, neutron soil moisture probe, and other instruments. Same as HORT/SOIL 620.

AGRO 625. Scientific Writing- How to be a Productive and Effective Writer
1-3 Credits (1-3)
Students will learn to improve their writing skills so that their manuscript preparation process is more efficient and productive. Students will also gain experience in peer-review. Students in the 600-level course will be required to perform additional research than those students in the 500-level cross-listing Crosslisted with: AGRO 525, HORT 525, EPWS 525 and SOIL 525.

AGRO 670. Biometrical Genetics and Plant Breeding
3 Credits
A statistical approach to gene action and population parameters as applied to plant improvement. Same as HORT 670.

AGRO 694. Doctoral Seminar
1 Credit
Current research discussions presented by doctoral level graduate students. Not more than 2 credits toward the degree. Same as SOIL 694.
Prerequisite: doctoral level graduate students.
AGRO 696. Doctoral Proposal
1 Credit
Current research proposal written by doctoral level graduate students. Not more than 1 credits toward the degree. May be repeated up to 1 credits. Crosslisted with: E S 696, AGRO 696, HORT 696 and SOIL 696.
Prerequisite(s): Doctoral level graduate students.

AGRO 697. University Teaching Experience
1-3 Credits (1-3)
Certain graduate students will be permitted to teach up to one-third of one AGRO/HORT/SOIL/ES course. The student will prepare and deliver lectures and will prepare, administer, and grade at least one examination. The professor in charge of the course will attend and evaluate the student’s lectures. Consent of instructor required. Crosslisted with: HORT 697 and SOIL 697

AGRO 698. Topics in Agronomy
1-6 Credits
Topics of current interest, designated by title and credit. Maximum of 6 credits per semester. No more than 9 credits toward a degree.

AGRO 700. Doctoral Dissertation
15 Credits
Dissertation.

Environmental Science Courses

E S 110G. Introductory Environmental Science
4 Credits (3+2P)
Introduction to environmental science as related to the protection, remediation, and sustainability of land, air, water, and food resources. Emphasis on the use of the scientific method and critical thinking skills in understanding environmental issues.

E S 256. Environmental Engineering and Science
3 Credits
Principles in environmental engineering and science: physical chemical systems and biological processes as applied to pollution control. Restricted to: Main campus, Alamogordo campus, Grants campus, Carlsbad campus. Crosslisted with: C E 256
Prerequisite(s): CHEM 111G and MATH 191G.

E S 256 L. Environmental Science Laboratory
1 Credit
Laboratory experiments associated with the material presented in E S 256. Same as C E 256L.
Corequisite: E S 256.

E S 300. Special Topics
1-4 Credits
Special subjects and credits to be announced in the Schedule of Classes. Consent of instructor required. Maximum of 4 credits per semester. Restricted to majors.

E S 301. Principles of Ecology
3 Credits
A survey of ecology including general theory, the adaptations of organisms, population dynamics, species interactions, and the structure and function of natural communities and ecosystems. Crosslisted with: BIOL 301
Prerequisite(s): BIOL 111G, A ST 311, and grade of C or better in MATH 191G or Math Placement Exam score adequate to enroll in mathematics courses beyond MATH 191G.

E S 312. Emergency Response to Hazardous Material Incidents
2 Credits
EPA approved Environmental Response Training Program Course 165.15. In compliance with OSHA 29 CFR 1910.120. Normally taken during last year of study. Same as E T 312 and WERC 312.
Prerequisite: consent of instructor.

E S 330. Environmental Management Seminar I
1 Credit

E S 361. Basic Toxicology
3 Credits
Same as TOX 361.
Prerequisite: CHEM 110G or CHEM 112G and BIOL 110G.

E S 370. Environmental Soil Science
3 Credits
Continuation of SOIL 252 that emphasizes soil properties and processes that directly relate to environmental pollution problems. Same as SOIL 370.
Prerequisite: SOIL 252.

E S 391. Internship
3 Credits
Professional work experience under the joint supervision of the employer and a faculty member. A written report is required. Maximum of 3 credits toward a degree. Consent of Instructor required. S/U Grading (S/U, Audit).

E S 422. Environmental Chemistry
3 Credits
Chemistry of organic and metal ion pollutants in the environment and principles important to their remediation including bioremediation. Restricted to: Main campus only. Crosslisted with: CHEM 422
Prerequisite(s): CHEM 112G and either CHEM 211 or CHEM 313.

E S 430. Environmental Management Seminar II
1 Credit
Survey of practical and new developments in environmental management field, hazardous and radioactive, waste management, and related health issues, provided through a series of guest lectures and reports of ongoing research. Restricted to: Main campus only. Crosslisted with: C E 430, CH E 430, E E 430, E T 430, I E 430 and WERC 430

E S 449. Special Problems
1-3 Credits
Research problem, experience training, or other special study approved by a faculty adviser. Maximum of 3 credits per semester and 6 credits toward a degree. May be repeated up to 6 credits. Consent of instructor required. Restricted to: E S majors.

E S 451. Special Topics
1-4 Credits (1-4)
Specific subjects and credits to be announced in the Schedule of Classes. Maximum of 4 credits per semester and a total of 9 credits toward a degree. May be repeated up to 9 credits. Consent of Instructor required.

E S 452. Geohydrology
4 Credits (3+2P)
Origin, occurrence, and movement of fluids in porous media and assessment of aquifer characteristics. Development and conservation of ground water resources, design of well fields. May be repeated up to 4 credits. Crosslisted with: GEOL 452 and C E 452.
Prerequisite(s)/Corequisite(s): MATH 121G. Prerequisite(s): Junior or Senior.
The fundamentals of measuring water will be covered. Participants will learn about measurement techniques that are used to estimate evapotranspiration as well as commonly used water measurement structures to estimate water use. The benefits and problems that are associated with using each measurement will be discussed. Students will also learn about the principles of how to use water measurement as a management tool.

Prerequisite(s): MATH 120 or consent of Instructor.

E S 460. Introduction to Air Pollution

3 Credits

An introduction to the physics and chemistry of tropospheric air pollution including sources of air pollution, local and long-range transport, instrumentation, regulatory requirements, control technology.

Prerequisite(s): PHYS 215G, CHEM 112G, MATH 191G.

E S 462. Sampling and Analysis of Environmental Contaminants

3 Credits (1+6P)

Theory, application, methodology, and instrumentation used in the sampling and analysis of environmental contaminants. Same as ENVE 462.

Prerequisites: E S 256.

E S 470. Environmental Impacts of Land Use and Contaminant Remediation

3 Credits

The course will cover the integrated assessment of soil erosion, contaminant transport in soil and water, and contaminant remediation from site scale to watershed scales. Understanding of the controlling factors for each type land use impact will be gained through the use of risk assessment, case studies, and computer modeling. Case studies will illustrate the processes under various environmental applications. This course will also cover the application of solute transport principles and methods for the remediation of contaminated soil and groundwater. It will also discuss the contaminated site characterization, monitoring, and remediation design. Discussions of innovative methodologies will be supported with case studies. May be repeated up to 3 credits. Crosslisted with: WSAM 460.

Prerequisite(s): E S 256.

E S 471. Water Quality and Geochemistry

3 Credits

We will cover the connection of water chemistry with water quality and apply geochemical modeling to practical problems. Discussions of assessment methodologies will be supported with case studies. The focus of this course is on team-based project learning. Computer software and models (mainly PHREEQC from USGS) will be used to learn analysis techniques.

Prerequisite(s): E S 370 or E S 452 or consent of instructor.

E S 557. Water Measurement

3 Credits

The fundamentals of measuring water will be covered. Participants will learn about measurement techniques that are used to estimate evapotranspiration as well as commonly used water measurement structures to estimate water use. The benefits and problems that are associated with using each measurement will be discussed. Students will also learn about the principles of how to use water measurement as a management tool.
GENE 320. Hereditary and Population Genetics
3 Credits
Covers fundamental principles of reproduction, variation, and heredity in plants and animals including: Mendelian inheritance, mitosis, meiosis, genetic linkage, random mating, genetic drift, natural selection, inbreeding, migration, mutation, interrelationships between individuals, populations and communities and the environment.
Prerequisite(s): CHEM 111G & BIOL 211G.

GENE 391. Genetics Internship
1-6 Credits (1-6)
Professional work experience in genetics under the joint supervision of an employer and a faculty member. Documentation of proposed internship activities must be submitted prior to the start of the internship. A written report is required after the internship is completed. No more than 6 credits toward a degree. May be repeated up to 6 credits. S/U Grading (S/U, Audit).

GENE 440. Genetics Seminar
1 Credit
Organization, preparation, and presentation of genetic studies in model microorganism, plant, or animal systems that have been used to solve problems in molecular, cellular, and developmental biology. Consent of instructor required.
Prerequisite(s): Seniors only; GENE 315 & GENE 320.

GENE 449. Special Problems
1-3 Credits (1-3)
Research problem, experience training, or other special study approved by a faculty adviser. Maximum of 3 credits per semester and a grand total of 3 credits toward a degree. Consent of instructor required.

GENE 450. Special Topics
1-3 Credits (1-3)
Specific subjects to be announced in the schedule of classes. Maximum of 3 credits per semester and a total of 3 credits toward a degree. Consent of instructor required.

GENE 452. Applied Bioinformatics
3 Credits
Survey and application of publicly available bioinformatic tools that treat genomic DNA, cDNA, and protein sequences, RNA abundance, as well as tools that allow inference based on phylogenetic relationships.
Prerequisites: AGRO/ANSC/BIOL/HORT 305 or GENE 315 and GENE 320, and BCHE 341, or BCHE 395.

GENE 486. Genes and Genomes
3 Credits
Extensive coverage of nuclear and organelle genome structure in plants and animals, genome restructuring including duplication, aneuploidy, chromosome translocations and inversions, comparative genomics, and molecular systematics.
Prerequisites: AGRO/ANSC/BIOL/HORT 305 or GENE 315, and GENE 320.

GENE 488. Gene Regulation
3 Credits
Extensive coverage of signal transduction processes and approaches used to monitor large scale changes in gene regulation and protein synthesis that occur during development and in response to environmental changes.
Prerequisites: AGRO/ANSC/BIOL/HORT 305 or GENE 315.

Horticulture Courses

HORT 100G. Introductory Plant Science
4 Credits (3+2P)
Introduction to the physical, biological, and chemical principles underlying plant growth and development in managed ecosystems. In the laboratory portion of the class, students perform experiments demonstrating the principles covered in lecture. The course uses economic plants and agriculturally relevant ecosystems to demonstrate basic principles. Appropriate for non-science majors. Same as AGRO 100G.

HORT 200. Special Topics
1-4 Credits
Specific subjects and credits as announced. Maximum of 4 credits per semester and a grand total of 9 credits. May be repeated up to 9 credits. Consent of Instructor required.

HORT 205. Introduction to Horticulture
3 Credits
Principles and practices of horticulture. Basic chemical, physical, and biological principles that govern plant growth in different environments. Economics of plant science as related to the field of horticulture. Online course entirely. Intended for non-majors.

HORT 210. Ornamental Plants I
4 Credits (3+2P)
Covers identification, botanical characteristics, culture, and landscape uses of woody plants. Emphasis on deciduous trees, native shrubs, and evergreens.

HORT 211. Ornamental Plants II
4 Credits (3+2P)
Identification, botanical characteristics, culture, and landscape uses of woody plants. Emphasis on flowering trees, cacti, and members of the pea and rose families.

HORT 240. Floral Quality Evaluation and Design
2 Credits (1+2P)
Critical hands-on evaluation of the quality of cut and potted floral and tropical foliage crops, their specific merits and faults, and fundamentals of floral design.

HORT 241. Floriculture Field Practicum
1 Credit
Participation as team member in the National Intercollegiate Floral Quality Evaluation and Design Competition. Intensive week-long travel for competition, networking with industry, academia, and floriculture tours. May be repeated for a maximum of 3 credits.
Prerequisite(s): HORT 240 or consent of instructor.

HORT 250. Plant Propagation
3 Credits (2+2P)
Practical methods of propagating horticultural plants by seed, cuttings, layering, grafting, division and tissue culture. Examination of relevant physiological processes involved with successful plant propagation techniques. Same as AGRO 250.

HORT 300. Special Topics
1-4 Credits
Specific subjects as announced in the Schedule of Classes. Maximum of 4 credits per semester and a grand total of 9 credits. May be repeated up to 9 credits. Consent of Instructor required. Restricted to Las Cruces campus only.
HORT 302V. Forestry and Society
3 Credits
Global study of the development and use of forest resources for production of wood, fuel, fiber, and food products. Climatic, edaphic, cultural, and economic influences on forests of the world evaluated. Same as RGSC 302V.

HORT 305. Principles of Genetics
3 Credits
Covers fundamental principles of reproduction, variation, and heredity in plants and animals. Crosslisted with: AGRO 305, ANSC 305, BIOL 305 and GENE 305
Prerequisite(s): BIOL 111G, BIOL 211G and either CHEM 111G or CHEM 115.

HORT 307. Landscape Design
3 Credits (1+4P)
Design elements, the design process, and contemporary planting design used in the design of residential and small commercial landscapes. Basic drafting, drawing, and landscape plan presentation techniques. Prerequisites: HORT 210 or HORT 211 or concurrent enrollment or consent of instructor.

HORT 310. Medicinal Herbs
3 Credits
Introduction to ethnobotany, including plant cultivation, extraction methods, and analysis of active chemistries.

HORT 315. Crop Physiology
3 Credits
Whole plant physiological processes as related to growth, development, yield, quality and post harvest physiology of crop plants within the environment of the crop community. Crosslisted with: AGRO 315
Prerequisite(s): EPWS/BIOL 314 or consent of instructor.

HORT 365. Principles of Crop Production
4 Credits (3+3P)
Basic principles of crop production including environmental and physiological factors limiting production, plant nutrition and soil science, soil-water management, cropping systems and management, pest management, and economic factors influencing crop production. Crosslisted with: AGRO 365
Prerequisite(s): AGRO/HORT 100, CHEM 111G or equivalent and MATH 120 or equivalent.

HORT 377. Introduction to Turfgrass Management
4 Credits (3+3P)
Establishment and maintenance of turfgrass with emphasis on seeding methods, soil and water management, mowing, disease insects and turfgrass varieties. Crosslisted with: AGRO 377

HORT 378. Turfgrass Science
4 Credits (3+3P)
Introduction to the scientific fundamentals for turfgrass management cultural practices, pest management, rootzone construction and ecology. Prerequisite(s): HORT 377 or consent of instructor.

HORT 391. Internship
1-6 Credits
Professional work experience under the joint supervision of the employer and a faculty member. A written report is required. No more than 6 credits toward a degree. Consent of instructor required. Graded: S/U. Crosslisted with: AGRO 391 and SOIL 391

HORT 447. Seminar
1 Credit
Review of current literature. Same as AGRO 447 and SOIL 447.

HORT 449. Special Problems
1-3 Credits
Research problem, experience training, or other special study approved by a faculty adviser. Maximum of 3 credits per semester and grand total of 6 credits. May be repeated up to 6 credits. Consent of Instructor required.

HORT 450. Special Topics
1-4 Credits
Specific subjects as announced in the Schedule of Classes. Maximum of 4 credits per semester and grand total of 9 credits. May be repeated up to 9 credits. Consent of Instructor required.

HORT 462. Plant Breeding
3 Credits
Principles and practices involved with the genetic improvement of plants. May be repeated up to 3 credits.
Prerequisite(s): ANSC/AGRO/BIOL/HORT/GENE 305 or GENE 315 and GENE 320.

HORT 471. Plant Mineral Nutrition
3 Credits
Basic and applied aspects of plant requirements for soil-derived minerals and the processes whereby minerals are acquired, absorbed, translocated, and utilized throughout the plant. Same as AGRO/EPWS 471.
Prerequisite: EPWS/BIOL 314, or concurrent enrollment, or consent of instructor.

HORT 479. Advanced Turfgrass Science
3 Credits
Extensive reviews of turfgrass sciences including ecology, physiology, entomology, pathology, weed science, and soil science. Prerequisite: HORT 378 or consent of instructor.

HORT 485. Vegetable Crop Management
4 Credits (3+2P)
Physiological, environmental and cultural aspects of vegetable crop production. Corequisite(s): AGRO 365 or HORT 365, or consent of instructor.

HORT 488. Greenhouse Management
4 Credits (3+3P)
Principles and practices involved in greenhouse structures and construction, site considerations, heating and cooling systems, greenhouse crop production techniques, sustainability practices. May be repeated up to 4 credits.
Prerequisite(s): HORT/AGRO 365 or consent of instructor.

HORT 492. Diagnosing Plant Disorders
3 Credits (2+3P)
Systematic diagnosis of the physiological, pathological, and entomological causes of plant disorders. Same as EPWS 492 and AGRO 492.
Prerequisites: EPWS 303 and EPWS 310.

HORT 500. Special Topics
1-4 Credits
Specific subjects and credits to be announced in the Schedule of Classes. Maximum of 4 credits per semester. No more than 9 credits toward a degree.

HORT 505. Research Orientation
4 Credits (3+2P)
Training in writing research proposals, presentation of research results, and interpretation of research results. Crosslisted with: AGRO 505 and SOIL 505.
HORT 506. Plant Genetics
3 Credits
Advanced treatment of the principles of classical genetics and heredity with emphasis on the nature and action of the gene including molecular analysis. May be repeated up to 3 credits. Crosslisted with: AGRO 506. BCHE 341 recommended. Prerequisite(s): AGRO 305/GENE 305/HORT 305/BIOL 305/ANSC 305 or consent of instructor.

HORT 514. Soil-Plant Relationships
3 Credits
Physical, chemical, and biological soil environment as it affects plant and crop growth. Same as AGRO/SOIL 514. Prerequisite(s): BIOL 314, SOIL 252.

HORT 515. Crop Physiology
3 Credits
Whole plant physiological processes as related to growth, development, yield, quality and post harvest physiology of crop plants within the environment of the crop community. Crosslisted with: AGRO 515 Prerequisite(s): EPWS/BIOL 314 or consent of instructor.

HORT 525. Scientific Writing How to be a Productive and Effective Writer
1-3 Credits (1-3)
Students will learn to improve their writing skills so that their manuscript preparation process is more efficient and productive. Students will also gain experience in peer-review. Crosslisted with: AGRO 525, AGRO 625, EPWS 525, SOIL 625 and SOIL 525. Prerequisite(s): BIOL 314 or consent of instructor.

HORT 533. Environmental Physiology of Plants
3 Credits
Integral responses of plants and crop productivity to naturally occurring and modified environmental factors such as radiation, temperatures, water vapor, carbon dioxide, and air flow. Same as AGRO/BIOL 533. Prerequisite: BIOL 314 or consent of instructor.

HORT 590. Graduate Seminar
1 Credit
Current research discussions presented by masters level graduate students. Not more than one credit toward the degree. Same as AGRO/SOIL 590. Crosslisted with: AGRO 590 and SOIL 590.

HORT 595. Internship
1-6 Credits
Supervised professional on-the-job learning experience. Limited to Master of Horticulture or Plant & Environmental Science candidates. Not more than 6 credits toward the degree.

HORT 596. Maters Proposal
1 Credit
Current research proposal written by maters level graduate students. Consent of Instructor required. Crosslisted with: AGRO 596, E S 596, GENE 596 and SOIL 596. Restricted to: Masters HORT; Masters PLEN majors. Prerequisite(s): Master level graduate students.

HORT 597. University Teaching Experience
1-3 Credits (1-3)
Certain graduate students will be permitted to teach up to one-third of one AGRO/HORT/SOIL/ES course. The student will prepare and deliver lectures and will prepare, administer, and grade at least one examination. The professor in charge of the course will attend and evaluate the student’s lectures. Consent of instructor required. Crosslisted with: AGRO 597 and SOIL 597

HORT 598. Special Research Programs
1-6 Credits
Individual investigations, either analytical or experimental. Maximum of 6 credits per semester. No more than 9 credits toward a degree. Prerequisite: consent of instructor.

HORT 599. Master’s Thesis
15 Credits
Thesis.

HORT 609. Breeding for Plant Disease Resistance
3 Credits
A practically-oriented course of lectures and discussion on concepts and principles of breeding for disease and pest resistance. Labs familiarize students with preparation, quantification, and application of inoculum to hosts. Same as AGRO 609.

HORT 610. Advanced Crop Breeding
4 Credits (3+3P)
Applications of breeding principles to crop improvement. Emphasis on breeding methodologies using modern techniques, including biotechnology. Same as AGRO 610. Prerequisite: AGRO 462 or consent of instructor.

HORT 620. Instrumentation in Agronomy
3 Credits
Use of instruments used in research in all areas of agronomy including gas chromatography, high performance liquid chromatography, neutron soil moisture probe, and other instruments. Same as AGRO/SOIL 620.

HORT 625. Scientific Writing- How to be a Productive and Effective Writer
1-3 Credits (1-3)
Students will learn to improve their writing skills so that their manuscript preparation process is more efficient and productive. Students will also gain experience in peer-review. Students in the 625 course will be required to perform additional research than those students in the 525 cross-listing. Crosslisted with: AGRO 525, EPWS 525, HORT 525 and SOIL 525.

HORT 670. Biometrical Genetics and Plant Breeding
3 Credits
A statistical approach to gene action and population parameters as applied to plant improvement. Same as AGRO 670. Prerequisite: AGRO 462 or consent of instructor.

HORT 676. Doctors Proposal
1 Credit
Current research proposal written by PhD level graduate students. Consent of Instructor required. Crosslisted with: AGRO 696, E S 696 and SOIL 696. Restricted to: Doctors PLEN majors. Prerequisite(s): PhD level graduate students.

HORT 697. University Teaching Experience
1-3 Credits (1-3)
Certain graduate students will be permitted to teach up to one-third of one AGRO/HORT/SOIL/ES course. The student will prepare and deliver lectures and will prepare, administer, and grade at least one examination. The professor in charge of the course will attend and evaluate the student’s lectures. Consent of instructor required. Crosslisted with: AGRO 697 and SOIL 697

Soil Courses

SOIL 200. Special Topics
1-4 Credits
Specific subjects and credits to be announced in the Schedule of Classes. Maximum of 4 credits per semester. No more than 9 credits toward a degree. May be repeated up to 9 credits. Consent of Instructor required.
SOIL 252. Soils
3 Credits
Origin, classification, morphology, and physical, chemical, and biological properties of soils. May be repeated up to 3 credits.
Prerequisite(s): CHEM 110G and MATH 120, OR CHEM 111G.

SOIL 252 L. Soils Laboratory
1 Credit
Morphological, chemical, physical and biological properties of soil in the laboratory and field.
Corequisite: SOIL 252.

SOIL 300. Special Topics
1-4 Credits
Specific subjects and credits announced in the Schedule of Classes. Maximum of 4 credits per semester. No more than 9 credits toward a degree. May be repeated up to 9 credits. Consent of Instructor required. Restricted to Las Cruces campus only.

SOIL 312. Soil Management and Fertility
3 Credits
Management, conservation, and fertility of soils; physical conditions affecting growth, nutrition, and plant production.
Prerequisite: SOIL 252.
Corequisite: SOIL 312L.

SOIL 312 L. Soil Management and Fertility Lab
1 Credit
Hands-on experience. Includes field trips, videos, calculations, visiting lecturers and other lab activities as possible.
Prerequisite: SOIL 252.
Corequisite: SOIL 312.

SOIL 370. Environmental Soil Science
3 Credits
Continuation of SOIL 252 that emphasizes soil properties and processes that directly relate to environmental pollution problems. Same as E S 370.
Prerequisite: SOIL 252.

SOIL 391. Internship
1-6 Credits (1-6)
Professional work experience under the joint supervision of the employer and a faculty member. A written report is required. No more than 6 credits toward a degree. Consent of Instructor required. S/U Grading (S/U, Audit).

SOIL 424. Soil Chemistry
3 Credits
Basic elements of soil chemistry including clay mineralogy, cation and anion exchange and the chemistry of problem (acid, saline and flooded) soils. Credit not given for both SOIL 424 and SOIL 479.
Prerequisite(s): SOIL 252L or CHEM 111G and 112G.

SOIL 447. Seminar
1 Credit
Organization, preparation, and presentation of current topics in agronomy, horticulture, and soil science. Same as AGRO/HORT 447.

SOIL 449. Special Problems
1-3 Credits
Research problem, experience training, or other special study approved by a faculty adviser. Maximum of 3 credits per semester and a grand total of 6 credits. May be repeated up to 6 credits. Consent of Instructor required.

SOIL 450. Special Topics
1-4 Credits
Specific subjects to be announced in the Schedule of Classes. Maximum of 4 credits per semester and a total of 9 credits towards a degree. May be repeated up to 9 credits. Consent of Instructor required.

SOIL 456. Irrigation and Drainage
3 Credits
Principles and practices required for irrigation to exist as a permanent economy. Equipment and methods for measurement and control of water.

SOIL 472. Soil Morphology and Classification
4 Credits (2+2P)
Terminology used to describe soils. Soil classification systems of the world with emphasis on systems used in the United States. Theory of classification and taxonomy as applied to soils. May be repeated up to 4 credits. Crosslisted with: GEOG 472.
Prerequisite(s): SOIL 252.

SOIL 476. Soil Microbiology
3 Credits
Nature and physiology of soil microorganisms, how they affect plant growth and recycle nutrients. Land farming, bioremediation and other environmental problems as influenced by soil microorganisms. SOIL 252 and BIOL 311 recommended. Same as BIOL 476.

SOIL 476 L. Soil Microbiology Laboratory
1 Credit
Enumeration of soil microorganisms, their activities, and transformations they mediate. Same as BIOL 476L.
Prerequisites: SOIL 476 or concurrent enrollment.

SOIL 477. Environmental Soil Physics
3 Credits
A description of the physical characteristics of porous media including soil. Examination of processes describing the transport of water, chemicals, heat and gases through porous media with application to environmental quality, waste management, and crop production.

SOIL 477 L. Environmental Soil Physics Laboratory
1 Credit
Concurrent enrollment with SOIL 477 recommended. Hands on experience with techniques for characterizing soil physical properties such as particle size distribution, bulk density, water retention, hydraulic conductivity and solute transport. Demonstrations of field and laboratory techniques for measuring moisture content, soil water potential, gas/air flow and thermal conductivity.
Prerequisite: SOIL 252.

SOIL 479. Environmental Soil Chemistry
3 Credits
Basic elements of soil chemistry including discussion of clay mineralogy, cation and anion exchange and the chemistry of problem (acid, saline and flooded) soils. Credit not given for both SOIL 424 and SOIL 479.
Prerequisite(s): SOIL 252L or CHEM 111G and 112G.

SOIL 500. Special Topics
1-4 Credits
Specific subjects and credits to be announced in the Schedule of Classes. Maximum of 4 credits per semester. No more than 9 credits toward a degree.

SOIL 505. Research Orientation
4 Credits (3+2P)
Training in writing research proposals, presentation of research results, and interpretation of research results. Crosslisted with: AGRO 505 and HORT 505.

SOIL 514. Soil-Plant Relationships
3 Credits
Physical, chemical, and biological soil environment as it affects plant and crop growth. Same as AGRO/HORT 514.
Prerequisites: BIOL 314, SOIL 252.
SOIL 525. Scientific Writing- How to be a Productive and Effective Writer
1-3 Credits (1-3)
Students will learn to improve their writing skills so that their manuscript preparation process is more efficient and productive. Students will also gain experience in peer-review. Crosslisted with: AGRO 525, AGRO 625, HORT 525, HORT 625, SOIL 625 and EPWS 525.

SOIL 590. Graduate Seminar
1 Credit
Current research discussions presented by master level graduate students. Not more than one credit toward the degree. Same as AGRO/HORT 590. Crosslisted with: AGRO 590 and HORT 590.

SOIL 596. Masters Proposal
1 Credit
Current research proposal written by masters level graduate students. Consent of Instructor required. Crosslisted with: AGRO 596, E S 596, GENE 596 and HORT 596. Restricted to: Masters HORT; Masters PLEN majors.
Corequisite(s): Master level graduate students.

SOIL 597. University Teaching Experience
1-3 Credits (1-3)
Certain graduate students will be permitted to teach up to one-third of one AGRO/HORT/SOIL/ES course. The student will prepare and deliver lectures and will prepare, administer, and grade at least one examination. The professor in charge of the course will attend and evaluate the student’s lectures. Consent of instructor required. Crosslisted with: AGRO 597 and HORT 597

SOIL 598. Special Research Programs
1-6 Credits
Individual investigations, either analytical or experimental. Maximum of 6 credits per semester. No more than 9 credits toward a degree.

SOIL 600. Doctoral Research
1-15 Credits
Research.

SOIL 625. Scientific Writing- How to be a Productive and Effective Writer
1-3 Credits (1-3)
Students will learn to improve their writing skills so that their manuscript preparation process is more efficient and productive. Students will also gain experience in peer-review. Students in the 625 course will be required to perform additional research than those students in the 525 cross-listing. Crosslisted with: AGRO 525, AGRO 625, HORT 525, HORT 625, SOIL 625 and EPWS 525.

SOIL 650. Advanced Topics
1-3 Credits
Colloquium on contemporary topics associated with agriculture, environmental science and engineering. Multidisciplinary topics will be chosen to encourage participation of students from diverse disciplines. May be repeated for a maximum of 9 credits. Consent of instructor required.

SOIL 652. Advanced Soil Physics
3 Credits
Advanced treatment of soil physics, modeling, includes working on an existing/new research project, modeling existing or new data, step by step guide on the use of some 1-D and 2-D models. Specific areas of specialization will be field scale variability of soil properties, water flow, solute transport, and plant water relations.
Prerequisite(s): SOIL 477 and computer literacy; or consent of instructor.

SOIL 655. Moisture Heat Contaminant Transport Modeling
3 Credits
Provides clear coverage of the basic principles of heat, moisture and contaminant transport through porous media, and a step-by-step guidance and hands on application on the use of some spreadsheet based and physically based one and two-dimensional transport models. A similar course does not exist in the college for students that can encourage them to pursue modeling as a means of solving vadose zone and groundwater contamination and remediation problems. Consent of instructor required.

SOIL 694. Doctoral Seminar
1 Credit
Current research discussions presented by doctoral level graduate students. Not more than 2 credits toward the degree. Same as AGRO 694.
Prerequisite: doctoral level graduate students.

SOIL 696. Doctoral Proposal
1 Credit
Current research proposal written by doctoral level graduate students. Not more than 1 credit toward the degree. Same as AGRO 696.
Prerequisite: doctoral level graduate students.

SOIL 697. University Teaching Experience
1-3 Credits (1-3)
Certain graduate students will be permitted to teach up to one-third of one AGRO/HORT/SOIL/ES course. The student will prepare and deliver lectures and will prepare, administer, and grade at least one examination. The professor in charge of the course will attend and evaluate the student’s lectures. Consent of instructor required. Crosslisted with: AGRO 697 and HORT 697

SOIL 698. Topics in Agronomy
1-6 Credits
Topics of current interest, designated by title and credit. Maximum of 6 credits per semester. No more than 9 credits toward a degree.
Office Location: Skeen Hall room N127
Phone: (575) 646-3405
Website: http://aces.nmsu.edu/academics/pes/